1. (a) **Solution.**

Let *a*, *b* be real numbers, and *h* : $\mathbb{R} \longrightarrow \mathbb{R}$ be the function defined by $h(x) = x^3 - 3a^2x + b$ for any $x \in \mathbb{R}$. Suppose $a > 0$.

Pick any $s, t \in [a, +\infty)$. Suppose $s < t$. Note that

$$
h(t) - h(s) = (t3 - 3a2t + b) - (s3 - 3a2s + b)
$$

= $(t3 - s3) - 3a2(t - s)$
= $(t - s)(t2 + st + s2 - 3a2)$

Since $s < t$, we have $t - s > 0$. Since $0 < a \le s < t$, we have $0 < a^2 \le s^2 < st < t^2$. Then $t^2 + st + s^2 > 3s^2 \ge 3a^2$. Therefore $t^2 + st + s^2 - 3a^2 > 0$. Hence $h(t) - h(s) = (t - s)(t^2 + st + s^2 - 3a^2) > 0.$ Then $h(s) < h(t)$. It follows that *h* is strictly increasing on the interval $[a, +\infty)$.

 (b) —

 $2. -$

3. (a) **Solution.**

Let *f* be a real-valued function of one real variable defined on some open interval *I* in R. Suppose *f* satisfies all the conditions:

(D) f is differentiable on I . $f(x) > 0$ for any $x \in I$.

Pick any $s, t \in I$. Suppose $s < t$.

(Since *I* is an open interval, the interval $[s, t]$ lies entirely inside *I*. By Condition (D), the function *f* is continuous on $[s, t]$ and it is differentiable on (s, t) .)

By the Mean-Value Theorem, there exists some $\zeta \in (s, t)$ such that $f(t) - f(s) = (t - s)f'(\zeta)$.

By Condition (P) , $f'(\zeta) > 0$.

Since $s < t$, we have $t - s > 0$.

Then $f(t) - f(s) = (t - s)f'(\zeta) > 0.$

Therefore $f(s) < f(t)$.

It follows that *f* is strictly increasing on *I*.

 (b) —