1. Answer.

Let u, v be integers. The integer u is said to be divisible by the integer v if there exists some integer k such that u = kv.

2. Solution.

(a) $0 = 0 \cdot 0$. 0 is an integer. Therefore 0 is divisible by 0.

(b) Let x be an integer. Suppose x is divisible by 0. Then, by definition, there exists some integer k such that $x = k \cdot 0$. Therefore (for the same k), we have $x = k \cdot 0 = 0$.

3. Solution.

Let $x, y \in \mathbb{Z}$. Suppose x is divisible by y and y is divisible by x. Since x is divisible by y, there exists some $k \in \mathbb{Z}$ such that x = ky. Since y is divisible by x, there exists some $\ell \in \mathbb{Z}$ such that $y = \ell x$.

We have $x = ky = k\ell x$.

Then $(k\ell - 1)x = 0$.

Therefore x = 0 or $k\ell = 1$.

- (Case 1). Suppose x = 0. Then y = 0. Therefore |x| = |y|.
- (Case 2). Suppose $x \neq 0$. Then $1 = k\ell$. Since k, ℓ are integers, we have $k = \ell = 1$ or $k = \ell = -1$. Then |x| = |ky| = |y|.

Hence in any case, |x| = |y|.