MATH1050 Workshop on Proof-writing 1 (Solution)

1. Let $x, n \in \mathbb{Z}$. Suppose x is divisible by n.

Let
$$y \in \mathbb{Z}$$
.

By assumption, there exists some $t \in \mathbb{Z}$ such that x = tn.

$$(5x + y)^{t} + (5x - y)^{t}$$

$$= [(5x + y) + (5x - y)][(5x + y)^{6} - (5x + y)^{5}(5x - y) + (5x + y)^{4}(5x - y)^{2} - (5x + y)^{3}(5x - y)^{3} + (5x + y)^{2}(5x - y)^{4} - (5x + y)(5x - y)^{5} + (5x - y)^{6}]$$

$$= 10x[(5x + y)^{6} - (5x + y)^{5}(5x - y) + (5x + y)^{4}(5x - y)^{2} - (5x + y)^{3}(5x - y)^{3} + (5x + y)^{2}(5x - y)^{4} - (5x + y)(5x - y)^{5} + (5x - y)^{6}]$$

$$= 10n \cdot t[(5x + y)^{6} - (5x + y)^{5}(5x - y) + (5x + y)^{4}(5x - y)^{2} - (5x + y)^{3}(5x - y)^{3} + (5x + y)^{2}(5x - y)^{4} - (5x + y)(5x - y)^{5} + (5x - y)^{6}]$$

Since t, x, y are integers, $t[(5x+y)^6 - (5x+y)^5(5x-y) + (5x+y)^4(5x-y)^2 - (5x+y)^3(5x-y)^3 + (5x+y)^2(5x-y)^4 - (5x+y)(5x-y)^5 + (5x-y)^6]$ is also an integer.

Then, by definition, $(5x + y)^7 + (5x - y)^7$ is divisible by 10*n*.

2. Let x, y be rational numbers. Suppose $y \neq 0$.

Since x is a rational number, there exist some $m, n \in \mathbb{Z}$ such that $n \neq 0$ and m = nx. Since y is a rational number, there exist some $p, q \in \mathbb{Z}$ such that $q \neq 0$ and p = qy.

Since $y \neq 0$, we have $p \neq 0$. Reach $n \neq 0$. Then $pn \neq 0$.

We also have $mq \cdot y = m \cdot qy = nx \cdot p = np \cdot x = np \cdot \frac{x}{y} \cdot y$.

Since $y \neq 0$, we have $mq = np \cdot \frac{x}{y}$. It follows that $\frac{x}{y}$ is a rational number.

3. Let p,q be prime numbers. Suppose p,q are positive and p ≠ q. Suppose it were true that p was divisible by q.
Since p is a prime number, p is divisible by 1, -1, p, -p only. Then, since p was divisible by q, q = 1 or q = -1 or q = p or q = -p. Since q is a prime number, q ≠ 1 and q ≠ -1. By assumption, q ≠ p.
Since p is positive, -p is negative. Then by assumption, q ≠ -p. Contradiction arises. It follows that p is not divisible by q in the first place.

4. Let a be a real number, and h: (0, +∞) → ℝ be the real-valued function of one real variable defined by h(x) = x + a²/x for any x ∈ (0, +∞). Suppose a > 0.
Pick any s, t ∈ (0, a]. Suppose s < t.
Note that

$$h(s) - h(t) = (s + \frac{a^2}{s}) - (t + \frac{a^2}{t}) = (s - t) + a^2(\frac{1}{s} - \frac{1}{t}) = (s - t) + \frac{a^2}{st}(t - s) = \frac{t - s}{st} \cdot (a^2 - st)$$

Since 0 < s < t, we have t - s > 0 and st > 0. Then $\frac{t - s}{st} > 0$. Since $0 < s < t \le a$, we have $0 < st < t^2 \le a^2$. Then $a^2 - st > 0$. Therefore $h(s) - h(t) = \frac{t - s}{st} \cdot (a^2 - st) > 0$. Then h(t) < h(s). It follows that h is strictly decreasing on (0, a]. 5. Let a, b be real numbers. Suppose $|a| \leq 1$ and $|b| \leq 1$. Suppose $\sqrt{1-a^2} + \sqrt{1-b^2} > 2\sqrt{1-(a+b)^2/4}$.

Note that $2\sqrt{1 - \frac{(a+b)^2}{4}} \ge 0.$

$$\begin{aligned} (1-a^2) + (1-b^2) + 2\sqrt{(1-a^2)(1-b^2)} &= (\sqrt{1-a^2} + \sqrt{1-b^2})^2 \\ &> \left[2\sqrt{1-\frac{(a+b)^2}{4}}\right]^2 = 4\left[1-\frac{(a+b)^2}{4}\right] = 4 - (a+b)^2 \end{aligned}$$

Therefore (after simplification), we would obtain $\sqrt{(1-a^2)(1-b^2)} > 1-ab$. Since $|a| \leq 1$ and $|b| \leq 1$, we have $ab \leq |ab| \leq 1$. Then $1-ab \geq 0$. Then $1-a^2-b^2+a^2b^2 = (1-a^2)(1-b^2) > (1-ab)^2 = 1-2ab+a^2b^2$. Therefore (after simplification), we would obtain $a^2 + b^2 - 2ab < 0$. But $a^2 + b^2 - 2ab = (a-b)^2 \geq 0$ because a, b are real numbers. Contradiction arises. Hence $\sqrt{1-a^2} + \sqrt{1-b^2} \leq 2\sqrt{1-\frac{(a+b)^2}{4}}$ in the first place.

6. Let $m, n \in \mathbb{N} \setminus \{0\}$. Let x be a positive real number. Suppose m > n.

We have
$$\left(x^m + \frac{1}{x^m}\right) - \left(x^n + \frac{1}{x^n}\right) = (x^m - x^n) - \frac{x^m - x^n}{x^{m+n}} = \frac{(x^m - x^n)(x^{m+n} - 1)}{x^{m+n}}$$

Note that $x^{m+n} > 0$. We verify that $(x^m - x^n)(x^{m+n} - 1) \ge 0$.

- (Case 1). Suppose 0 < x < 1. Then $0 < x^{m-n} < 1$ and $x^n > 0$. Therefore $x^m - x^n = (x^{m-n} - 1)x^n < 0$. Hence $x^m - x^n < 0$. Also $0 < x^{m+n} < 1$. Then $x^{m+n} - 1 < 0$. It follows that $(x^m - x^n)(x^{m+n} - 1) > 0$.
- (Case 2). Suppose $x \ge 1$. Then $x^{m-n} \ge 1$ and $x^n > 0$. Therefore $x^m - x^n = (x^{m-n} - 1) \cdot x^n > 0$. Hence $x^m - x^n \ge 0$. Also $x^{m+n} \ge 1$. Then $x^{m+n} - 1 \ge 0$. It follows that $(x^m - x^n)(x^{m+n} - 1) \ge 0$.

Therefore, in any case, $(x^m - x^n)(x^{m+n} - 1) \ge 0$.

It follows that
$$\left(x^m + \frac{1}{x^m}\right) - \left(x^n + \frac{1}{x^n}\right) = \frac{(x^m - x^n)(x^{m+n} - 1)}{x^{m+n}} \ge 0$$
. Hence $x^m + \frac{1}{x^m} \ge x^n + \frac{1}{x^n}$.

- Suppose x = 1. Then $x^m + \frac{1}{x^m} = 2 = x^n + \frac{1}{x^n}$.
- Suppose $x^m + \frac{1}{x^m} = x^n + \frac{1}{x^n}$. Then $0 = \frac{(x^m x^n)(x^{m+n} 1)}{x^{m+n}}$. Therefore $x^m = x^n$ or $x^{m+n} = 1$.

* (Case 1). Suppose $x^m = x^n$. Then $x^{m-n} = 1$. Since m > n, we have m - n > 0. Since x > 0, we have x = 1.

* (Case 2). Suppose $x^{m+n} = 1$. Note that m + n > 0. Since x > 0, we have x = 1.

Hence, in any case, we have x = 1.