- 1. Prove the statement (\star) below, with reference to the definition for *divisibility*:
 - (*) Let $x, n \in \mathbb{Z}$. Suppose x is divisible by n. Then for any $y \in \mathbb{Z}$, $(5x + y)^7 + (5x y)^7$ is divisible by 10n.
- 2. Prove the statement (\star) below, with reference to the definition for *rational numbers*:

(*) Let x, y be rational numbers. Suppose $y \neq 0$. Then $\frac{x}{y}$ is a rational number.

- 3. Prove the statement (\star) below, with reference to the definitions for *divisibility* and *prime number*:
 - (*) Let p, q be prime numbers. Suppose p, q are positive and $p \neq q$. Then p is not divisible by q.
- 4. Prove the statement (\star) below, with reference to the definition of *strict monotonicity*:
 - (*) Let a be a real number, and $h: (0, +\infty) \longrightarrow \mathbb{R}$ be the real-valued function of one real variable defined by $h(x) = x + \frac{a^2}{x}$ for any $x \in (0, +\infty)$. Suppose a > 0. Then h is strictly decreasing on (0, a].
- 5. Prove the statement (\star) below:
 - (*) Let a, b be real numbers. Suppose $|a| \le 1$ and $|b| \le 1$. Then $\sqrt{1-a^2} + \sqrt{1-b^2} \le 2\sqrt{1-(a+b)^2/4}$.
- 6. Prove the statement (\star) below:
 - (*) Let $m, n \in \mathbb{N} \setminus \{0\}$. Let x be a positive real number. Suppose m > n. Then $x^m + \frac{1}{x^m} \ge x^n + \frac{1}{x^n}$. Moreover, equality holds iff x = 1.