MATH1050 Exercise 9 (Answers and selected solution)

1. Solution.

- (a) M is formally formulated as: 'For any set A, for any functions f, g : A → A, the equality g ∘ f = f ∘ g as functions holds.'
 Hence ~M reads: 'There exist some set A, some functions f, g : A → A such that g ∘ f ≠ f ∘ g as functions.'
- (b) Let $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ be functions defined by $f(x) = \frac{x^2}{1+x^2}, g(x) = x 1$ for any $x \in \mathbb{R}$.
 - i. For any $x \in \mathbb{R}$, we have

$$\begin{split} (g \circ f)(x) &= g(f(x)) &= g\left(\frac{x^2}{1+x^2}\right) = \frac{x^2}{1+x^2} - 1 = -\frac{1}{1+x^2}, \\ (f \circ g)(x) &= f(g(x)) &= f(x-1) = \frac{(x-1)^2}{1+(x-1)^2}. \end{split}$$

ii. We have $(g \circ f)(0) = -1$ and $(f \circ g)(0) = \frac{1}{2}$. Hence $(g \circ f)(0) \neq (f \circ g)(0)$.

- iii. There exists some $x_0 \in \mathbb{R}$, namely, $x_0 = 0$, such that $(g \circ f)(x_0) \neq (f \circ g)(x_0)$. Hence it is not true that $g \circ f = f \circ g$ as functions.
- (c) Let $A = \{0, 1\}$.

Define $f, g: A \longrightarrow A$ by f(0) = f(1) = 0, g(0) = g(1) = 1. $g \circ f: A \longrightarrow A$ is given by $(g \circ f)(0) = g(f(0)) = g(0) = 1$, $(g \circ f)(1) = g(f(1)) = g(0) = 1$. $g \circ f: A \longrightarrow A$ is given by $(f \circ g)(0) = f(g(0)) = f(1) = 0$, $(f \circ g)(1) = f(g(1)) = f(1) = 0$. Take $x_0 = 0$. We have $(g \circ f)(x_0) = 1$ and $(f \circ g)(x_0) = 0$. Then $(g \circ f)(x_0) \neq (f \circ g)(x_0)$. Therefore $g \circ f \neq f \circ g$ as functions.

Remark. Let A be a set. (This set is fixed in our subsequent discussion.) Suppose $f, g : A \longrightarrow A$ are two functions from the set A to A itself.

- When we want to verify that $g \circ f$, $f \circ g$ are the same function from A to A, we have to verify that for any $x \in A$, $(g \circ f)(x) = (f \circ g)(x)$.
- To verify that $g \circ f$, $f \circ g$ are not the same function from A to A, we check that there exists some $x_0 \in A$ such that $(g \circ f)(x_0) \neq (f \circ g)(x_0)$. Hence we have to name an appropriate x_0 and show that $(g \circ f)(x_0) \neq (f \circ g)(x_0)$.

2. Answer.

(a) (I) Pick any Alternative answer. Let Alternative answer. Suppose Alternative answer. Assume Alternative answer. Take any (II) $x = (y+1)^{\frac{3}{5}}$ (III) $f(x) = x^{\frac{5}{3}} - 1 = \left[(y+1)^{\frac{3}{5}}\right]^{\frac{5}{3}} - 1 = (y+1) - 1 = y$

(IV) f is surjective.

(b) (I) $x, w \in \mathbb{R}$

(II) Suppose Alternative answer. Assume (III) f(x) + 1 = f(w) + 1(IV) $(w^{\frac{5}{3}})^{\frac{3}{5}} = w$ (V) f is injective

3. Answer.

(a) (I) Take Alternative answer. Let Alternative answer. Define Alternative answer. Pick Alternative answer. Suppose Alternative answer. Assume (II) for any $x \in \mathbb{R}$ (III) Suppose Alternative answer. Assume (IV) there existed some $x_0 \in \mathbb{R}$ such that $f(x_0) = y_0$. (V) 0(VI) $\left(x_0 - \frac{1}{2}\right)^2 + \frac{3}{4} \ge 0 + \frac{3}{4}$ (VII) f is not surjective. (b) (I) $w_0 = 2$. (II) $x_0 \neq w_0$. (III) $f(w_0) = \frac{2}{2^2 + 1} = \frac{2}{5}$ (IV) $f(w_0)$ (V) f is not injective

4. —

5. Answer.

- (a) No. Note that f(0) = f(1).
- (b) No. Note that $f(x) \neq 1$ for any $x \in \mathbb{R}$.

6. Solution.

- (a) Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be the function defined by $f(x) = x^4 4x^2$ for any $x \in \mathbb{R}$.
 - i. We verify that f is not injective:
 - Take $x_0 = 0$, $w_0 = 2$. We have $x_0, w_0 \in \mathbb{R}$ and $x_0 \neq w_0$. Also, $f(x_0) = 0 = f(w_0)$.
 - ii. We verify that f is not surjective:
 - Take $y_0 = -5$. Pick any $x \in \mathbb{R}$. We have $f(x) = x^4 - 4x^2 = (x^2 - 2)^2 - 4 \ge -4 > -5$. Then $f(x) \neq -5$. Hence, for any $x \in \mathbb{R}$, $f(x) \neq y_0$.
- (b) Let $x \in (\sqrt{2}, +\infty)$. $x^4 4x^2 = (x^2 2)^2 4 > 0 4 = -4$.
- (c) Let $g: (\sqrt{2}, +\infty) \longrightarrow (-4, +\infty)$ be the function defined by $g(x) = x^4 4x^2$ for any $x \in (\sqrt{2}, +\infty)$.
 - i. Pick any $x, w \in (\sqrt{2}, +\infty)$. Suppose g(x) = g(w). Then $x^4 4x^2 = w^4 4w^2$. Therefore $(x - w)(x + w)(x^2 + w^2) = (x^2 - w^2)(x^2 + w^2) = 4(x^2 - w^2) = 4(x - w)(x + w)$. Then $(x - w)(x + w)(x^2 + w^2 - 4) = 0$. Note that $x \ge \sqrt{2} > 0$ and $w \ge \sqrt{2} > 0$. Then x + w > 0 and $x^2 + w^2 - 4 > 0$. Then x = w. It follows that g is injective.
 - ii. Pick any $y \in (-4, +\infty)$. Note that y + 4 > 0. Then $\sqrt{y+4}$ is well-defined and $2 + \sqrt{4+y} > 2$. Therefore $\sqrt{2+\sqrt{4+y}}$ is well-defined and $\sqrt{2+\sqrt{4+y}} > \sqrt{2}$. Take $x = \sqrt{2+\sqrt{4+y}}$. Note that $x \in (\sqrt{2}, +\infty)$. We have $g(x) = x^4 - 4x^2 = (\sqrt{2+\sqrt{4+y}})^4 - 4(\sqrt{2+\sqrt{4+y}})^2 = (2+\sqrt{4+y})^2 - 4(2+\sqrt{4+y}) + 4 - 4 = [(2+\sqrt{4+y})-2]^2 - 4 = (4+y) - 4 = y$. It follows that g is surjective.
 - iii. Since g is both injective and surjective, g is bijective. Its inverse function $g^{-1} : (-4, +\infty) \longrightarrow (\sqrt{2}, +\infty)$ is given by $g^{-1}(y) = \sqrt{2 + \sqrt{4 + y}}$ for any $y \in (-4, +\infty)$.

Remark. Although f and g have the same 'formula of definition', one is bijective and the other is not. So when talking about a function, be aware of its domain and its range, and don't just look at its 'formula of definition'.

7. Answer.

(a)
$$J = (1, +\infty).$$

(b) $f^{-1}(y) = \frac{1}{4} \left(\ln \left(\frac{y+1}{y-1} \right) \right)^2$ for any $y \in J$.

8. Answer.

(a) —

(b) No.

9. Answer.

- (a) —
- (b) The inverse function $f^{-1}: \mathbb{C} \longrightarrow \mathbb{C}$ of the function f is given by $f^{-1}(z) = \overline{z}$ for any $z \in \mathbb{C}$.

Comment. The conjugate of the conjugate of a complex number is the complex number itself.

10. **Answer.**

- (a) No.
- (b) No.

11. Answer.

- (a) —
- (b) i.
 - ii. ——

iii. The 'formula of definition' for inverse function $f^{-1} : \mathbb{C} \setminus \{a/c\} \longrightarrow \mathbb{C} \setminus \{-d/c\}$ of the function f is given by $f^{-1}(\zeta) = \frac{d\zeta - b}{-c\zeta + a}$ for any $\zeta \in \mathbb{C} \setminus \{a/c\}$.

12. (a) Hint. The crucial step is to apply Triangle Inequality to obtain

$$f(b) = b^3 \left(1 + \frac{p}{b} + \frac{q}{b^2} + \frac{r}{b^3} \right) \ge b^3 \left(1 - \frac{|p|}{b} - \frac{|q|}{b^2} - \frac{|r|}{b^3} \right).$$

(b) *Hint*. For each $\gamma \in \mathbb{R}$, apply the result in the previous to the function $f_{\gamma} : \mathbb{R} \longrightarrow \mathbb{R}$ defined by $f_{\gamma}(x) = \frac{g(x) - \gamma}{A}$ for any $x \in \mathbb{R}$.

13. **Answer.**

(a)	1, 2.	(d)	1, 2.	(g)	0, 1, 2, 3, 4.
(b)	0, 1.	(e)	2, 3, 4.	(h)	1, 2.
(c)	It is the empty set.	(f)	2.	(i)	2, 3, 4.

14. Answer.

$$\begin{array}{ll} (a) \ \alpha = -1. \\ (b) \ \beta = 1, \ \gamma = \frac{5}{4}. \\ (c) \ \delta = -1, \ \varepsilon = \frac{5}{3}. \\ (d) \ \zeta = -\sqrt{2} + 1, \ \eta = \sqrt{2} + 1. \\ (e) \ \theta = -\sqrt{2} + 1, \ \kappa = -\frac{\sqrt{5}}{2} + 1, \ \lambda = \frac{\sqrt{5}}{2} + 1, \ \mu = \sqrt{2} + 1. \end{array}$$

(f)
$$\nu = -\frac{1}{\sqrt{2}} + 1, \xi = \frac{1}{\sqrt{2}} + 1.$$

(g) $\rho = -\frac{1}{\sqrt{2}} + 1, \sigma = \frac{1}{\sqrt{2}} + 1.$
(h) $\tau = -\sqrt{2} + 1, \varphi = -\frac{1}{\sqrt{2}} + 1, \psi = \frac{1}{\sqrt{2}} + 1, \omega = \sqrt{2} + 1.$

15. **Answer.**

(a)
$$\alpha = 0, \beta = 3, \gamma = 1, \delta = -1.$$

(b)
$$\varepsilon = -2, \zeta = -0.25, \eta = -1, \theta = 0, \kappa = 1.$$

16. Answer.

(a)
$$a = 2, b = 3.$$
 (b) 1,4.

(c)
$$\alpha = 0, \beta = 1, \gamma = 2, \delta = 4.$$

17. Answer.

(a) (I) Suppose $y \in f(S)$ (II) there exists some $x \in S$ such that y = f(x)(III) $y = f(x) = 2x^4 - 4 \ge 2 \cdot 1^4 - 4 = -2$ (IV) Since $x \leq 2$ (V) Take $x = \sqrt[4]{\frac{y+4}{2}}$ (VI) $x = \sqrt[4]{\frac{y+4}{2}} \ge 1$ (VII) Since $y \le 28$, we have $\frac{y+4}{2} \le 16$ (VIII) $x = \sqrt[4]{\frac{y+4}{2}} \le 2$ (IX) $f(x) = 2x^4 - 4 = 2\left(\sqrt[4]{\frac{y+4}{2}}\right)^4 - 4 = 2 \cdot \frac{y+4}{2} - 4 = y + 4 - 4 = y$ (X) $y \in f(S)$ (I) Suppose $x \in f^{-1}(U)$ (b) (II) there exists some $y \in U$ such that y = f(x)(III) $y \in U$ (IV) $2x^4 - 4 = f(x) = y \le 4$ (V) Suppose $x \in [-\sqrt{2}, \sqrt{2}]$ (VI) Define y = f(x)(VII) $y = f(x) = 2x^4 - 4 \le 4$ (VIII) $y = f(x) = 2x^4 - 4 \ge -6$ (IX) and (X) $x \in f^{-1}(U)$

18. **Answer.**

- (a) (p,q) = (0,0) or (p,q) = (0,1). $(s,t) = (1,\tau)$, provided that $-2 \le \tau < 2$.
- (b) (p,q) = (1,1) and (s,t) = (2,1). Alternative answer: (p,q) = (1,2) and (s,t) = (2,2).
- (c) (m,n) = (0,0). (p,q) = (1,1) or (p,q) = (1,2).