MATH1050 Exercise 8 Supplement

1. Let ${a_n}_{n=0}^{\infty}$ be the infinite sequence of positive real numbers recursively defined by

$$
\begin{cases}\n a_0 = \sqrt{2} \\
a_{n+1} = \sqrt{2 + a_n} \quad \text{for each } n \in \mathbb{N}\n\end{cases}
$$

- (a) i. Prove that $\{a_n\}_{n=0}^{\infty}$ is strictly increasing.
	- ii. Prove that $a_n < 2$ for each $n \in \mathbb{N}$.

iii. Prove that
$$
\frac{2 - a_1}{2 - a_0} \le \frac{2 - \sqrt{2}}{2}.
$$

iv. Prove that
$$
2 - a_n \le \left(\frac{2 - \sqrt{2}}{2}\right)^n (2 - \sqrt{2})
$$
 for each $n \in \mathbb{N}$.

(b) Now let ${b_n}_{n=0}^{\infty}$ be the infinite sequence of positive real numbers $b_n = \frac{a_0 a_1 a_2 \cdot ... \cdot a_n}{2^{n+1}}$ $\frac{a_2 + \cdots + a_n}{2^{n+1}}$ for each $n \in \mathbb{N}$. Name a lower bound for ${b_n}_{n=0}^{\infty}$, and justify your answer. Also prove that ${b_n}_{n=0}^{\infty}$ is strictly decreasing. **Remark.** It follows from the Bounded-Monotone Theorem that $\lim_{n\to\infty} b_n$ exists. It turns out that $\lim_{n\to\infty} b_n = \frac{2}{\pi}$ $\frac{2}{\pi}$. This is known as **Vieta's formula for** *π*.

2. Let $0 < \alpha < 1$ and $\{a_n\}_{n=0}^{\infty}$ be the infinite sequence of positive real numbers recursively defined by

$$
\begin{cases}\n a_0 = \alpha \\
a_{n+1} = \sqrt{\frac{1+a_n}{2}} \quad \text{for each } n \in \mathbb{N}\n\end{cases}
$$

(a) i. Prove that $0 < a_n < 1$ for each $n \in \mathbb{N}$. ii. Prove that $\{a_n\}_{n=0}^{\infty}$ is strictly increasing.

(b) Let ${b_n}_{n=0}^{\infty}$ be the infinite sequence of positive real numbers defined by $b_n = \sqrt{\frac{1-a_n}{2}}$ $\frac{a_n}{2}$ for each $n \in \mathbb{N}$.

i. Prove that $\frac{b_n}{2} < b_{n+1} < \frac{b_n}{\sqrt{2}}$ for each $n \in \mathbb{N}$.

ii. Hence, or otherwise, deduce that $0 < b_n <$ $\sqrt{1 - \alpha}$ $\frac{\sqrt{1-\alpha}}{(\sqrt{2})^{n+1}}$ and $1-\frac{1-\alpha}{2^n}$ $\frac{\alpha}{2^n} < a_n < 1$ for each $n \in \mathbb{N}$.

3. For any $n \in \mathbb{N} \setminus \{0\}$, define $b_n = \sum_{k=1}^n \frac{1}{k}$ *k*=1 $\frac{1}{k}$.

- (a) Verify that ${b_n}_{n=1}^{\infty}$ is strictly increasing.
- (b) i. Prove that for any $m \in \mathbb{N}$, $b_{2^{m+1}} b_{2^m} \geq \frac{1}{2}$ $\frac{1}{2}$.
	- ii.[◇] Hence deduce that ${b_n}_{n=1}^{\infty}$ is not bounded above in \mathbb{R} . (*Hint.* Apply the Telescopic Method.) **Remark.** In the argument, you may apply the apparently 'obviously true' statement below:
		- *The set* N *is not bounded above in* R*.*

4. Let $S = \left\{ x \middle| \right\}$ $x = \frac{n+2}{1}$ $\frac{n+2}{n+1}$ for some $n \in \mathbb{N}$

- (a) Prove that *S* has a greatest element.
- (b) Prove that *S* does not have any least element.
- (c) Prove that *S* is bounded below in R.

5. Let
$$
S = \left\{ x \in \mathbb{R} : x = \frac{1}{3^m} + \frac{1}{5^n} \text{ for some } m, n \in \mathbb{N} \right\}.
$$

- (a) Does *S* have any greatest element? Why?
- (b) Does *S* have any least element? Why?
- (c) Is *S* bounded below in R? Why?
- 6. *The various parts in this question are concerned with applications of the Cauchy-Schwarz Inequality. They are independent of each other.*
	- (a) Let a_1, a_2, \dots, a_n be positive real numbers. Prove the statements below:

i.
$$
a_1^2 + a_2^2 + \cdots + a_n^2 \ge a_1 a_2 + a_2 a_3 + \cdots + a_{n-1} a_n + a_n a_1
$$
.
\nii. $a_1^2 + a_2^2 + \cdots + a_n^2 = a_1 a_2 + a_2 a_3 + \cdots + a_{n-1} a_n + a_n a_1$ iff $a_1 = a_2 = \cdots = a_n$.

(b) Let a_1, a_2, \dots, a_n be non-zero real numbers. Prove the statements below:

i.
$$
n^2 \le \left(\sum_{k=1}^n a_k^2\right) \left(\sum_{k=1}^n \frac{1}{a_k^2}\right).
$$

ii. $n^2 = \left(\sum_{k=1}^n a_k^2\right) \left(\sum_{k=1}^n \frac{1}{a_k^2}\right)$ iff $|a_1| = |a_2| = \cdots = |a_n|.$

Remark. How about an argument using the Arithmetico-geometrical Inequality?

- (c) Prove the statements below:
	- i. Suppose $a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n, c_1, c_2, \dots, c_n, d_1, d_2, \dots, d_n$ are real numbers. Then

$$
\left(\sum_{j=1}^n a_j b_j c_j d_j\right)^4 \le \left(\sum_{j=1}^n a_j^{-4}\right) \left(\sum_{j=1}^n b_j^{-4}\right) \left(\sum_{j=1}^n c_j^{-4}\right) \left(\sum_{j=1}^n d_j^{-4}\right).
$$

ii. Suppose $r_1, r_2, \dots, r_n, s_1, s_2, \dots, s_n, t_1, t_2, \dots, t_n$ are non-negative real numbers. Then

$$
\left(\sum_{j=1}^n r_j s_j t_j\right)^3 \le \left(\sum_{j=1}^n r_j^3\right) \left(\sum_{j=1}^n s_j^3\right) \left(\sum_{j=1}^n t_j^3\right).
$$

7. (a) Let a_1, a_2, \dots, a_n be positive real numbers. Let m be a non-negative integer.

Prove that
$$
\left(\sum_{j=1}^{n} a_j^{m+1}\right)^2 \le \left(\sum_{j=1}^{n} a_j^{m}\right) \left(\sum_{j=1}^{n} a_j^{m+2}\right).
$$

Remark. You may need the Cauchy-Schwarz Inequality.

-
- (b)^{\diamond} Let b_1, b_2, \cdots, b_n be positive real numbers. Suppose $\sum_{n=1}^{n}$ *j*=1 $b_j = 1.$

By applying the results in the previous part, or otherwise, prove that $\sum_{n=1}^{n}$ *j*=1 $b_j^p \leq n \sum_{i=1}^n$ *j*=1 b_j ^{*p*+1} for each non-negative integer *p*.

 (c) ^{\diamond} Let c_1, c_2, \dots, c_n be positive real numbers.

By applying the results in the previous part, or otherwise, prove that $\sqrt{ }$ $\left(\sum_{n=1}^{n}$ *j*=1 *cj* \setminus $\overline{ }$ $\sqrt{ }$ $\left(\sum_{n=1}^{n}$ *j*=1 c_j ^r $\binom{n}{n}$ *j*=1 c_j ^{$r+1$} for each non-negative integer *r*.

- 8. *In this question, you may need apply the Cauchy-Schwarz Inequality more than once.*
	- (a) Let a_1, a_2, \dots, a_n be real numbers. Prove that $\frac{1}{n}$ $\left(\sum_{n=1}^{n}$ *k*=1 *ak* \setminus^2 *≤* X*n k*=1 a_k^2 .
	- (b) Let $b_1, b_2, \dots, b_n, c_1, c_2, \dots, c_n$ are real numbers. Further suppose that b_1, b_2, \dots, b_n are positive.

Prove that
$$
\left(\sum_{k=1}^{n} b_k c_k\right)^2 \le \left(\sum_{k=1}^{n} b_k\right) \left(\sum_{j=1}^{n} b_j c_j^2\right).
$$

(c)^{\diamond} Let $r \geq 2$, and x_1, x_2, \cdots, x_n be real numbers which are not all zero.

By applying the results in the previous part, or otherwise, prove that $\left(\sum_{i=1}^{n} x_i\right)$

k=1

xk r k

 \setminus^2

 $\langle \sum_{n=1}^{n}$ *k*=1

 x_k^2 $\frac{\sigma_{\kappa}}{r^k}$.

- 9. (a) Let $a_1, a_2, \cdots, a_n, b_1, b_2, \cdots, b_n$ be non-zero real numbers.
	- i. Let p, q be real numbers. Suppose $p \leq \frac{b_k}{p}$ $\frac{\partial k}{\partial k} \leq q$ for each $k = 1, 2, \dots, n$.

Prove that
$$
(p+q)\sum_{k=1}^{n} a_k b_k \ge \sum_{k=1}^{n} b_k^2 + pq \sum_{k=1}^{n} a_k^2
$$
.

ii. Let m, M be real numbers. Suppose $0 < m \le a_k \le M$ and $0 < m \le b_k \le M$ for each $k = 1, 2, \dots, n$. By applying the result in the previous part, or otherwise, prove that

$$
\left(\sum_{k=1}^{n} a_k^{2}\right) \left(\sum_{k=1}^{n} b_k^{2}\right) \leq \frac{1}{4} \left(\frac{M}{m} + \frac{m}{M}\right)^{2} \left(\sum_{k=1}^{n} a_k b_k\right)^{2}.
$$

(b)*♢* Apply the results in the previous part, together with the Cauchy-Schwarz Inequality, or otherwise, prove that for each positive integer *n*,

$$
\left(n+\frac{1}{9}\right)^2 < \left[\sum_{k=1}^n \left(1+\frac{1}{3^k}\right)^2\right] \left[\sum_{k=1}^n \left(1-\frac{1}{3^{k+1}}\right)^2\right] < \frac{169}{144} \left(n+\frac{1}{3}\right)^2.
$$

10.*♢ In this question you are assumed to be familiar with calculus of one real variable.*

Take for granted the validity of the result below about definite integrals:

- *• Let a, b be real numbers, with a < b, and let h be a real-valued function of one real variable whose domain contains the interval* [a, b]*. Suppose* h *is continuous on* [a, b]*. Further suppose that* $h(x) \geq 0$ *for any* $x \in [a, b]$ *. Then* \int^b *a* $h(t)dt \geq 0$ *. Moreover, equality holds iff* $h(x) = 0$ *for any* $x \in [a, b]$ *.*
- (a) Prove the statement below, which is the 'inequality part' in the result known as **Cauchy-Schwarz Inequality for definite integrals**:
	- *Suppose* $f, g : (\alpha, \beta) \longrightarrow \mathbb{R}$ *are continuous functions. Then, whenever* $\alpha < a < b < \beta$,

$$
\left| \int_a^b f(u)g(u)du \right| \leq \left(\int_a^b |f(u)|^2 du \right)^{\frac{1}{2}} \left(\int_a^b |g(u)|^2 du \right)^{\frac{1}{2}}.
$$

- (b) Prove the statement below, which is the 'inequality part' in the result known as **Triangle Inequality for definite integrals**:
	- *Suppose* $f, g : (\alpha, \beta) \longrightarrow \mathbb{R}$ *are continuous functions. Then, whenever* $\alpha < a < b < \beta$,

$$
\sqrt{\int_a^b |f(u) + g(u)|^2 du} \le \sqrt{\int_a^b |f(u)|^2 du} + \sqrt{\int_a^b |g(u)|^2 du}.
$$

11. *In this question you are assumed to be familiar with calculus of one real variable.*

Let $a, b \in \mathbb{R}$, with $a < b$, and f be a real-valued function of one real variable which is twice-continuously differentiable on an open interval which contains the closed and bounded interval [a, b] entirely. Suppose $f(a) = f(b) = 0$.

(a) Verify that
$$
\int_{a}^{b} f(x)f''(x)dx = -\int_{a}^{b} (f'(x))^{2} dx
$$
.

(b) Here we suppose that \int^b *a* $(f(x))^{2} dx = 1.$

i. Prove that
$$
\int_{a}^{b} x f(x) f'(x) dx = -\frac{1}{2}.
$$

ii.*♢* By applying the Cauchy-Schwarz Inequality, or otherwise, deduce that

$$
\left(\int_a^b (f'(x))^2 dx\right) \left(\int_a^b u^2 (f(u))^2 du\right) \ge \frac{1}{4}
$$

.

(c) Here we no longer suppose that \int^b *a* $(f(x))^2 dx = 1$. We only suppose that *f* is not constant on [*a, b*].

Take for granted that \int_{0}^{b} *a* $|f(x)|^2 dx > 0.$

i.⁵ Prove that
$$
\left(\int_a^b (f'(x))^2 dx\right) \left(\int_a^b u^2 (f(u))^2 du\right) \ge \frac{1}{4} \left(\int_a^b (f(x))^2 dx\right)^2.
$$
ii.⁴ Hence, or otherwise, prove that
$$
\left(\int_a^b (f''(x))^2 dx\right) \left(\int_a^b u^2 (f(u))^2 du\right)^2 \ge \frac{1}{16} \left(\int_a^b (f(x))^2 dx\right)^3.
$$

(*Hint.* At some stage of the argument, you may need the Cauchy-Schwarz Inequality.)

12. *In this question you are assumed to be familiar with calculus of one real variable.*

Take for granted the validity of the result below about definite integrals:

• Let a, b be real numbers, with a < b, and let g, h be real-valued functions of one real variable whose domains contain the interval [*a, b*]*.* Suppose *g, h* are continuous on [*a, b*]*.* Further suppose that $g(x) \leq h(x)$ for any $x \in [a, b]$ *. Then* \int^b *a* $g(t)dt \leq \int_0^b$ *a h*(*t*)*dt.*

Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a function. Suppose f is continuously differentiable function on \mathbb{R} . Suppose $f(0) = 0$ and $f(1) = 0$.

(a) Prove that
$$
f(x) = \int_0^x f'(t)dt = -\int_x^1 f'(t)dt
$$
 for any $x \in [0, 1]$.

(b)*♣* By applying the Cauchy-Schwarz Inequality, or otherwise, prove the statements below:

i.
$$
(f(x))^2 \le x \int_0^{\frac{1}{2}} (f'(t))^2 dt
$$
 for any $x \in [0, \frac{1}{2}]$.
ii. $(f(x))^2 \le (1-x) \int_{\frac{1}{2}}^1 (f'(t))^2 dt$ for any $x \in [\frac{1}{2}, 1]$.

(c)[♣] Hence, or otherwise, prove that \int_1^1 0 $(f(x))^{2}dx \leq \frac{1}{2}$ 8 0 $(f'(x))^2 dx$.

- 13. *The various parts in this question are concerned with applications of the Arithmetico-geometrical Inequality. They are independent of each other.*
	- (a) Let *n* be an integer greater than 1. Suppose b_1, b_2, \dots, b_n are positive real numbers.

Prove that
$$
\frac{b_1}{b_2} + \frac{b_2}{b_3} + \cdots + \frac{b_{n-1}}{b_n} + \frac{b_n}{b_1} \ge n
$$
.

(b) i. Let *n* be a positive integer. Prove that $\frac{n+2}{n+1} > \left(\frac{n+1}{n}\right)$ *n* $\bigg)^{n/(n+1)}$.

ii. Hence deduce that $\left(1+\frac{1}{\cdots}\right)$ *m* + *k* $\binom{m+k}{ }$ $> \left(1 + \frac{1}{n} \right)$ *m* $\binom{m}{k}$ whenever m, k are positive integers.

- (c) Let *n* be a positive integer.
	- i. Prove that $\frac{1}{n}$ $\begin{bmatrix} 1 \end{bmatrix}$ $\frac{1}{1\cdot 2} + \frac{1}{2}$ $\left[\frac{1}{2\cdot 3} + \cdots + \frac{1}{n(n+1)}\right] > \frac{1}{\sqrt[n]{(n!)^2}}$ $\frac{1}{\sqrt[n]{(n!)^2(n+1)}}$. ii. Hence deduce that $(n!)^2 > (n+1)^{n-1}$.

(d) Let a_1, a_2, \dots, a_n be *n* positive numbers, and $S = \sum_{n=1}^{n}$ *j*=1 *a^j* .

i. Prove that $\sum_{n=1}^n$ *k*=1 *S* $\frac{S}{S - a_k} \geq \frac{n^2}{n - a_k}$ $\frac{n}{n-1}$.

ii. Hence, or otherwise, deduce that $\sum_{n=1}^n$ *k*=1 *ak* $\frac{a_k}{S - a_k} \geq \frac{n}{n-1}$ $\frac{n}{n-1}$.

- (e) Let the angles at the vertices A, B, C in $\triangle ABC$ be α, β, γ respectively. Suppose each angle in $\triangle ABC$ is an acute angle.
	- i. Prove that $\cos^2(\alpha) + \cos^2(\beta) + \cos^2(\gamma) = 1 2\cos(\alpha)\cos(\beta)\cos(\gamma)$. **Remark.** At some stage you may need express $\cos^2(\mu) + \cos^2(\nu)$ in terms of $\cos(2\mu)$, $\cos(2\nu)$.
	- ii. Prove that $\cos^2(\alpha)\cos^2(\beta)\cos^2(\gamma) < \frac{1}{2}$ $rac{1}{27}$.

14. *Here we are going to re-prove the Arithmetico-geometrical Inequality.*

(a) Let a, b be real numbers. Suppose $a \leq 1 \leq b$.

Prove that $a + b > ab + 1$. Also prove that equality holds iff $(a = 1 \text{ or } b = 1)$.

- (b)*♣* Apply mathematical induction to verify the statement below:
	- (†) Let *n* be an integer greater than 1. Suppose c_1, c_2, \dots, c_n are positive real numbers. Further suppose $c_1c_2 \cdot \ldots \cdot c_n = 1$. Then $c_1 + c_2 + \cdots + c_n \ge n$. Equality holds iff $c_1 = c_2 = \cdots = c_n$.

Remark. At some stage of the 'inductive argument', you may need the result in part (a).

- (c) ^{\diamond} By applying the result in the previous part, or otherwise, show that the statement below is true:
	- (†) Let n be an integer greater than 1. Suppose a_1, a_2, \dots, a_n are positive real numbers. Then $(a_1a_2 \cdot ... \cdot a_n)^{\frac{1}{n}} \leq$ $a_1 + a_2 + \cdots + a_n$ $\frac{n}{n}$. Equality holds iff $a_1 = a_2 = \cdots = a_n$.
- 15. *Here we are going to re-prove the Arithmetico-geometrical Inequality.*
	- (a) Let *n* be an integer greater than 1. Let *a*, *b* be non-negative real numbers. Prove that $(a + b)^n \ge a^n + na^{n-1}b$. Also prove that equality holds iff $b = 0$.
	- (b) Let $\{x_n\}_{n=1}^{\infty}$ be an increasing infinite sequence of positive real numbers.

For each positive integer *n*, define $A_n = \frac{x_1 + x_2 + \cdots + x_n}{x_n}$ $\frac{1}{n}$, $G_n = (x_1 x_2 \cdot ... \cdot x_n)^{\frac{1}{n}}$.

- i. Let *m* be a positive integer.
	- A.^{\diamond} Prove that $A_{m+1} \geq A_m$.
	- B. Express x_{m+1} in the form $P_m A_{m+1} Q_m A_m$ for some appropriate positive integers P_m, Q_m (whose values depend on *m*).
	- C^{\clubsuit} Prove that $A_{m+1}^{m+1} \geq A_m^{m} x_{m+1}$. (Hint: Start by re-expressing A_{m+1} as $A_m + (A_{m+1} A_m)$, and apply the result in part (a).)
- ii. Hence, or otherwise, prove that the statement below is true:
	- Let *n* be a positive integer. $A_n \geq G_n$. Equality holds iff $x_1 = x_2 = \cdots = x_n$.
- 16. (a) Verify the statements below:

i. Let
$$
a, b \in \mathbb{R}
$$
. Suppose $0 \le a < b$. Then $\frac{a}{1+a} \le \frac{b}{1+b}$.

ii. Let $a, b \in \mathbb{R}$. Suppose a, b are non-negative. Then $\frac{a+b}{1+a+b} \leq \frac{a}{1+a}$ $\frac{a}{1+a} + \frac{b}{1+b}$ $\frac{6}{1+b}$

- (b) Applying mathematical induction, or otherwise, prove the statement below:
	- Let $n \in \mathbb{N} \setminus \{0\}$ *. Suppose* x_1, x_2, \dots, x_n are non-negative real numbers. Then

$$
\frac{x_1 + x_2 + \dots + x_n}{1 + x_1 + x_2 + \dots + x_n} \le \sum_{j=1}^n \frac{x_j}{1 + x_j}.
$$

- (c) Hence, or otherwise, prove the statement below:
	- Let $n \in \mathbb{N} \setminus \{0\}$. Suppose c_1, c_2, \dots, c_n are non-negative real numbers. Then

$$
\frac{c_1c_2\cdots c_n}{1+c_1c_2\cdots c_n} \le \frac{c_1^{n}+c_2^{n}+\cdots+c_n^{n}}{n+c_1^{n}+c_2^{n}+\cdots+c_n^{n}} \le \sum_{j=1}^n \frac{c_j^{n}}{n+c_j^{n}}.
$$

17. (a) Let *n*, *k* be positive integers. Suppose $k \leq n$. Verify that $\frac{1}{n^k}$ *n k* $\Big) \geq \frac{1}{i}$ $\frac{1}{k!}$.

(b) Applying the Arithmetico-Geometrical Inequality together with the Binomial Theorem, or otherwise, prove the statement below:

\n- Let
$$
a_1, a_2, \dots, a_n
$$
 be positive real numbers. Suppose $s = \sum_{j=1}^n a_n$. Then $\prod_{k=1}^n (1 + a_k) \leq \sum_{r=0}^n \frac{s^r}{r!}$.
\n- (c) Let $x \in \mathbb{R}$. Suppose $0 < x < 1$. For any $n \in \mathbb{N} \setminus \{0\}$, define $b_n = \prod_{k=1}^n (1 + x^k)$.
\n

- i. Prove that ${b_n}_{n=1}^{\infty}$ is strictly increasing.
- ii. *Take for granted that* $\sum_{n=1}^n$ *r*=0 *p r* $\frac{p}{r!} \leq e^p$ *for any* $p > 0$ *for any* $n \in \mathbb{N}$. Prove that ${b_n}_{n=1}^{\infty}$ is bounded above by $e^{x/(1-x)}$.
- 18. Let *p* be a positive integer.
	- (a) Let *x* be a real number. Suppose $0 \leq x \leq 1$.
		- i. Prove that $1 + x^p \ge x^k + x^{p-k}$ for each $k = 0, 1, 2, \dots, p$.
		- ii.[♦] Hence, or otherwise, deduce that $(1+x)^p ≤ 2^{p-1}(1+x^p)$.

(b) Let *u*, *v* be positive real numbers. Prove that $\left(\frac{u+v}{2}\right)$ 2 $\left\langle \int_{0}^{p} \leq \frac{u^{p} + v^{p}}{2} \right\vert$ $\frac{1}{2}$.

- (c)*♢* Apply mathematical induction to justify the statement (*↑*) below:
	- (†) Let *n* be a non-negative integer. Suppose a_1, a_2, \dots, a_{2^n} are positive real numbers. Then

$$
\left(\frac{a_1 + a_2 + \dots + a_{2^n}}{2^n}\right)^p \le \frac{a_1^p + a_2^p + \dots + a_{2^n}^p}{2^n}.
$$

(d)*♣* Hence, or otherwise, prove that the statement (*⇑*) below is true:

 (\Uparrow) *Let n be a positive integer. Suppose* a_1, a_2, \dots, a_n *be positive real numbers. Then*

$$
\left(\frac{a_1+a_2+\cdots+a_n}{n}\right)^p\leq \frac{a_1^p+a_2^p+\cdots+a_n^p}{n}.
$$

Remark. Suppose *p* is a positive integer and a_1, a_2, \dots, a_n are *n* positive real numbers. Then the number $a_1^p + a_2^p + \cdots + a_n^p$ $\frac{n}{n}$ is called the **mean power of** a_1, a_2, \dots, a_n **of order** *p*. (When $p = 1$, this number is the arithmetic mean of a_1, a_2, \dots, a_n ; when $p = 2$, this number is more often called the root-square-mean of a_1, a_2, \dots, a_n .) What has proved here is that the mean power of a collection of finitely many positive real numbers of order *p* is greater than or equal to the arithmetic mean of the same collection of numbers.

- 19. (a) Let *x*, *y* be positive real numbers. Prove that $\sqrt{(1 + x)(1 + y)} \ge 1 + \sqrt{xy}$.
	- (b)*♢* Apply mathematical induction to justify the statement (*↑*) below:
		- (\uparrow) Let $n \in \mathbb{N}$. Suppose a_1, a_2, \dots, a_{2^n} are positive real numbers. Then

$$
\sqrt[2^n]{(1+a_1)(1+a_2)\cdot...\cdot(1+a_{2^n})} \ge 1 + \sqrt[2^n]{a_1a_2\cdot...\cdot a_{2^n}}
$$

(c)*♣* Hence, or otherwise, prove that the statement (*⇑*) below is true:

(\uparrow) Let $n \in \mathbb{N} \setminus \{0, 1\}$ *. Suppose* a_1, a_2, \cdots, a_n are positive real numbers. Then

$$
\sqrt[n]{(1+a_1)(1+a_2)\cdot\ldots\cdot(1+a_n)} \ge 1 + \sqrt[n]{a_1 a_2 \cdot \ldots \cdot a_n}
$$

(d) Hence, or otherwise, deduce the statement (*♯*):

.

.

(†) Let $n \in \mathbb{N} \setminus \{0, 1\}$. Suppose $u_1, u_2, \dots, u_n, v_1, v_2, \dots, v_n$ are positive real numbers. Then

$$
\sqrt[n]{(u_1+v_1)(u_2+v_2)\cdot...\cdot(u_n+v_n)} \ge \sqrt[n]{u_1u_2\cdot...\cdot u_n} + \sqrt[n]{v_1v_2\cdot...\cdot v_n}
$$

20.^{\diamond} Let α be a positive real number. For each $n \geq 2$, define

$$
a_n = \left(1 + \frac{\alpha}{n}\right)^n
$$
, $b_n = \sum_{k=0}^n \frac{\alpha^k}{k!}$, $c_n = \left(1 - \frac{\alpha^2}{2n}\right) \sum_{k=0}^n \frac{\alpha^k}{k!}$.

(a) Show that ${b_n}_{n=2}^{\infty}$ is strictly increasing.

(b) i. By applying the Binomial Theorem, or otherwise, show that

$$
a_n = R + S\alpha + \sum_{k=2}^n \frac{T\alpha^k}{k!} \cdot T \cdot \left(T - \frac{1}{n}\right) \left(T - \frac{2}{n}\right) \cdot \dots \cdot \left(T - \frac{k-1}{n}\right)
$$

whenever $n \geq 2$. Here R, S, T are positive integers which are independent of *n*. You have to determine the respective values of *R, S, T* explicitly.

- ii. Deduce that $a_n < b_n$ whenever $n \geq 2$.
- iii. Show that $b_n \leq b_{N-1} + \frac{\alpha^N}{(1 \alpha/N) \cdot (N!)}$ whenever $n \geq 2$ and $N > \alpha$.
- iv. Also show that $c_n < a_n$ whenever $n \geq \frac{\alpha^2}{2}$ $rac{1}{2}$.
- (c) Show that $\{a_n\}_{n=2}^{\infty}$ is strictly increasing.
- 21.^{\heartsuit} Let *S* be a subset of R and $\sigma \in \mathbb{R}$. Suppose σ is an upper bound of *S* in R. Prove that the two statements below are logically equivalent:
	- (*†*) For any $\beta \in \mathbb{R}$, if β is an upper bound of *S* in \mathbb{R} then $\sigma \leq \beta$.
	- (*‡*) For any positive real number ε , there exists some $x \in S$ such that $\sigma \varepsilon < x$.

Remark. We introduce/recall the definition for the notion of **least upper bound of a set** here:

Let S be a subset of \mathbb{R} and $\sigma \in \mathbb{R}$ *,* σ *is said to be a least upper bound of S* in \mathbb{R} *if both of the statements* (**LU1**)*,* **(LU2)** *are true:*

(LU1) σ is an upper bound of *S* in R.

(LU2) For any $\beta \in \mathbb{R}$, if β is an upper bound of S in R then $\sigma \leq \beta$.

We also introduce/recall the **Least-upper-bound Axiom** for the real number system:

Let S be a subset of R*. Suppose S is non-empty and is bounded above in* R*. Then S has a least upper bound.*

What we have established in this question is an equivalent formulation for the definition for 'least upper bound of a set': we may replace **(LU2)** by:

(LU2') For any positive real number ε , there exists some $x \in S$ such that $\sigma - \varepsilon < x$.

22. (a) Let $\alpha \in \mathbb{R}$, and $A = \{x \mid x < \alpha\}$. Verify the statements below:

- i. For any $x \in A$, $y \in \mathbb{R}$, if $y < x$ then $y \in A$.
- ii. $A \neq \emptyset$ *.*
- iii. $A \neq \mathbb{R}$.
- iv. For any $x \in A$, there exists $x' \in A$ such that $x < x'$.

(b)^{\heartsuit} Let *A* be a subset of **R**. Suppose Conditions (C1), (C2), (C3), (C4) are all satisfied:

- (C1) *For any* $x \in A$ *,* $y \in \mathbb{R}$ *, if* $y < x$ *then* $y \in A$ *.*
- $(C2)$ $A \neq \emptyset$ *.*
- $(C3)$ $A \neq \mathbb{R}$.
- (C4) For any $x \in A$, there exists $x' \in A$ such that $x < x'$.

Prove that there exists some $\alpha \in \mathbb{R}$ such that $A = \{x \mid x < \alpha\}$. (*You will need the Least-upper-bound Axiom at some stage in your argument.*)

Remark. What we have just proved is a **characterization of half-open intervals.**

- 23. (a) Prove the statements below:
	- i. Let $\alpha, \beta \in \mathbb{Q}$. Suppose $\alpha < \beta$. Then there exists some $r \in \mathbb{Q}$ such that $\alpha < r < \beta$.
	- ii. Let $\alpha, \beta \in \mathbb{Q}$. Suppose $\alpha < \beta$. Then there exists some $u \in \mathbb{R} \setminus \mathbb{Q}$ such that $\alpha < r < \beta$.

Remark. Don't think too hard.

(b)*♡* Apply the Archimedean Principle and the Well-ordering Principle for Integers to prove the statement below: (\sharp) Let $\alpha, \beta \in \mathbb{R}$. Suppose $\beta > \alpha > 0$. Then there exists some $r \in \mathbb{Q}$ such that $\alpha < r < \beta$.

(*Hint.* Is it guaranteed that there is some positive integer, say, N for which the interval (α, β) will contain at least two distinct fractions with denominator *N* and with integral numerators? If there is indeed such an integer

N, is it true that $\frac{1}{N} < \beta - \alpha$?)

(c) Hence, or otherwise, prove the statements below:

- i.[▲] Let $\alpha, \beta \in \mathbb{R}$ *. Suppose* $\alpha < \beta$ *. Then there exists some* $r \in \mathbb{Q}$ *such that* $\alpha < r < \beta$ *.* **Remark.** It is an exercise on how to cleverly split an argument into various cases.
- ii.^{\diamond} *Let* $\alpha, \beta \in \mathbb{R}$ *. Suppose* $\alpha < \beta$ *. Then there exists some* $r \in \mathbb{R} \setminus \mathbb{Q}$ *such that* $\alpha < u < \beta$ *.*
- (d) Prove the statements below:
	- i.[▲] Suppose $x \in \mathbb{R}$. Then there exists some increasing infinite sequence of rational numbers $\{a_n\}_{n=1}^{\infty}$ such that $x-\frac{1}{2}$ $\frac{1}{2n}$ < a_n < *x* for any $n \in \mathbb{N} \setminus \{0\}$ *.*

(*Hint.* First apply the Archimedean Principle to obtain some infinite sequence of rational numbers $\{c_n\}_{n=0}^{\infty}$ which satisfies $x - \frac{1}{2}$ $\frac{1}{2n}$ < c_n < *x* for any $n \in \mathbb{N} \setminus \{0\}$ but which is not necessarily increasing.)

ii.[♦] Suppose $x \in \mathbb{R}$. Then there exists some decreasing infinite sequence of rational numbers $\{b_n\}_{n=1}^{\infty}$ such that $x < b_n < x + \frac{1}{2}$ $\frac{1}{2n}$ for any $n \in \mathbb{N} \setminus \{0\}$ *.*

(*Hint.* Make clever use of the result in the previous part.)

- iii.[▲] Suppose $x \in \mathbb{R}$. Then there exist some infinite sequence of closed and bounded intervals $\{I_n\}_{n=1}^{\infty}$ such that *Conditions* (N1)*,* (N2)*,* (N3)*,* (N4) *are all satisfied:*
	- (N1) $x \in I_n$ for any $x \in \mathbb{N} \setminus \{0\}$.
	- (N2) For any $n \in \mathbb{N} \setminus \{0\}$, the endpoints of I_n are rational numbers whose distance from each other is most $\frac{1}{n}$, and neither endpoints of I_n is x .
	- (N3) $I_{n+1} \subset I_n$ for any $n \in \mathbb{N} \setminus \{0\}$.
	- $\{M \in \mathbb{R} : u \in I_n \text{ for any } n \in \mathbb{N} \setminus \{0\}\} = \{x\}.$

(*Hint.* Apply the results in the two parts above.)