MATH1050 Exercise 8 Supplement

1. Let {a,}32, be the infinite sequence of positive real numbers recursively defined by

ao = \/5
an+1 = +2+a, foreachneN

(a) 1. Prove that {a,}32, is strictly increasing.
ii. Prove that a,, < 2 for each n € N.
2—a _2-V2 .
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iii. Prove that

iv. Prove that 2 — a, < ( ) (2 —+/2) for each n € N.

apa1ag - ... - Q@
——= " "™ for each n € N.
2n+1

(b) Now let {b,,}22, be the infinite sequence of positive real numbers b,, =
Name a lower bound for {b,,}5%,, and justify your answer. Also prove that {b,}52, is strictly decreasing.

2
Remark. It follows from the Bounded-Monotone Theorem that lim b,, exists. It turns out that lim b, = —
n—o00 n—oo m

This is known as Vieta’s formula for 7.

2. Let 0 < a < 1 and {a,}52, be the infinite sequence of positive real numbers recursively defined by

ag = «

/1 n
pt1 = —|—2a for each n € N

(a) i. Prove that 0 < a,, <1 for each n € N.

ii. Prove that {a,}5% is strictly increasing.

1—a,

(b) Let {b,}22, be the infinite sequence of positive real numbers defined by b,, = for each n € N.

b b
i. Prove that ?n <bpgr < —”2 for each n € N.

\f
V11—«

1
ii. Hence, or otherwise, deduce that 0 < b, < W and 1 — 70{ < anp <1 for each n € N.

| =

3. For any n € N\{0}, define b,, = Z
k=1

(a) Verify that {b,}52, is strictly increasing.
1
(b) i. Prove that for any m € N, bgm+1 — bgm > 7
ii.® Hence deduce that {b,}5%, is not bounded above in IR. (Hint. Apply the Telescopic Method.)
Remark. In the argument, you may apply the apparently ‘obviously true’ statement below:

e The set N is not bounded above in R.

2
4. LetSz{x‘x:rH_ forsomenEN}.
n+1

(a) Prove that S has a greatest element.
(b) Prove that S does not have any least element.

(c) Prove that S is bounded below in IR.
1 1
5. LetS:{mEIR:x:3m+5nforsomem,nEN}.

(a) Does S have any greatest element? Why?
(b) Does S have any least element? Why?



(¢) Is S bounded below in IR? Why?

6. The wvarious parts in this question are concerned with applications of the Cauchy-Schwarz Inequality. They are
independent of each other.

(a) Let ay,asq,- - ,a, be positive real numbers. Prove the statements below:
i a2 +a®+ - 4an?>aias+asas + -+ an_10n + ana;.
. a2+ a2+ +ap2=aias +asazs+ -+ an_16n + anay iffag =as =--- = a,.

(b) Let ai,as,--- ,ay, be non-zero real numbers. Prove the statements below:

n n 1
: 2 < 2 -

k=1 k=1

n n 1
s 2: 2 — 'H‘ — — .. = .
ii. n (;ak )(Z ak2> iff |aq]| = |asg| |an

k=1
Remark. How about an argument using the Arithmetico-geometrical Inequality?
(¢) Prove the statements below:

i. Suppose ay,as,- -+ ,an,b1,b2,- - ,b,, 1,62, ,Cp,dy,ds, -+ ,d, are real numbers. Then

4

n n n n n
§ : 2 : 4 2 : 4 2 : 4 E : 4
ajbjdej S CLj bj Cj dj
j=1 j=1 j=1 j=1 j=1

ii. Suppose r1,79,++ ,7n,81,82, ** ,Sn,t1,t2, ++ ,t, are non-negative real numbers. Then

3

n n n n

§ : § : 3 § 3 § 3
’/‘ijtj < T S5 tj

j=1 j=1 j=1 j=1

7. (a) Let aj,ag,- - ,ay, be positive real numbers. Let m be a non-negative integer.
2
n n n
Prove that Z ajmﬂ < Z a;™ Z ajm+2
Jj=1 Jj=1 Jj=1

Remark. You may need the Cauchy-Schwarz Inequality.

(b)® Let by, by, - - - , by, be positive real numbers. Suppose Z b; =1.
j=1

n n
By applying the results in the previous part, or otherwise, prove that Z b’ < nz b;? *1 for each non-negative
j=1 j=1
integer p.

(c)® Let c1,ca,- -+ , ¢, be positive real numbers.

n n n
By applying the results in the previous part, or otherwise, prove that Z cj Z ¢i" ] < nz ch'H for each
j=1

Jj=1 Jj=1

non-negative integer r.

8. In this question, you may need apply the Cauchy-Schwarz Inequality more than once.

2
1 n n
a) Let a ,ag, ,Q be real numbers. Prove that — a < a 2.
( ) 1,42 n n <k§ ‘ k) y § k

k=1
(b) Let by,ba, -+ ,by,c1,ca, - , ¢y, are real numbers. Further suppose that by, ba, - , b, are positive.
n 2 n n
Prove that (Z bkck> < <Z bk> ijcj2
k=1 k=1 j=1
(c)® Let r > 2, and 21,23, , 2, be real numbers which are not all zero.
n 2 n 2
. . . . Tk T
By applying the results in the previous part, or otherwise, prove that (Z k) < —
r r
k=1 k=1



9. (a) Let ay,ag, - ,an,b1,ba, -+, b, be non-zero real numbers.

b
i. Let p, ¢ be real numbers. Suppose p < - < qforeach k=1,2,--- n.
ar

n n n
Prove that (p + q)z arb, > Z bi? + pqz ai’.
k=1 k=1 k=1
ii. Let m, M be real numbers. Suppose 0 < m < ay < M and 0 < m < by < M for each k =1,2,--- ,n.
By applying the result in the previous part, or otherwise, prove that

(E) (Ee) =165 (Be).

(b)® Apply the results in the previous part, together with the Cauchy-Schwarz Inequality, or otherwise, prove that
for each positive integer n,

(o) <S03 [0 st) < B e

k=1
10.© In this question you are assumed to be familiar with calculus of one real variable.
Take for granted the validity of the result below about definite integrals:

e Let a,b be real numbers, with a < b, and let h be a real-valued function of one real variable whose domain
contains the interval [a,b]. Suppose h is continuous on [a,b]. Further suppose that h(x) > 0 for any x € [a,b].

b
Then / h(t)dt > 0. Moreover, equality holds iff h(z) = 0 for any x € [a, b].

(a) Prove the statement below, which is the ‘inequality part’ in the result known as Cauchy-Schwarz Inequality
for definite integrals:

e Suppose f,g: (a,8) — R are continuous functions. Then, whenever a < a < b < 3,

< ( / bf(U)IZdU>é ( / b|g<u>|2du>;.

(b) Prove the statement below, which is the ‘inequality part’ in the result known as Triangle Inequality for
definite integrals:

/a " fu)g(u)du

e Suppose f,g: (a,8) — R are continuous functions. Then, whenever o < a < b < (3,

b b b
\/ / If(U)+9(U)I2du£\/ / If(U)IQdU+\/ / l9(u)[2du.

11. In this question you are assumed to be familiar with calculus of one real variable.

Let a,b € R, with a < b, and f be a real-valued function of one real variable which is twice-continuously differentiable
on an open interval which contains the closed and bounded interval [a, b] entirely. Suppose f(a) = f(b) = 0.

b b
(a) Verify that/ f(x)f”(x)dx:—/ (f'(x))*dz.

b
(b) Here we suppose that / (f(z))%dx = 1.

a

1

b
i. Prove that / xf(x)f'(x)dx = ~5

ii.® By applying the Cauchy-Schwarz Inequality, or otherwise, deduce that

( / b(f’(w))zdw> ( / u2<f<u>>2du) =

b
(¢) Here we no longer suppose that / (f(2))?dz = 1. We only suppose that f is not constant on [a, b].

b
Take for granted that / |f(2)|?dz > 0.
a



b b b 2
i.Y Prove that </ (f'(m))%lm) (/ u2(f(u))2du> > i (/ (f(m))2dx> :
3

2
ii.* Hence, or otherwise, prove that (/b(f”(x))zdx> </b u2(f(u))2du> > liﬁ (/b(f(x))zdx> :

(Hint. At some stage of the argument, you may need the Cauchy-Schwarz Inequality.)

12. In this question you are assumed to be familiar with calculus of one real variable.

Take for granted the validity of the result below about definite integrals:

e Let a,b be real numbers, with a < b, and let g, h be real-valued functions of one real variable whose domains
contain the interval [a,b]. Suppose g,h are continuous on [a,b]. Further suppose that g(x) < h(zx) for any

x € [a,b]. Then /bg(t)dt < /b h(t)dt.

a

Let f : IR — IR be a function. Suppose f is continuously differentiable function on R. Suppose f(0) = 0 and f(1) = 0.

T 1
(a) Prove that f(z) = / f(t)dt = —/ f'(t)dt for any z € [0, 1].
0 T

(b)"' By applying the Cauchy-Schwarz Inequality, or otherwise, prove the statements below:

i (f(z)? < x/02 (f'(t))%dt for any z € [0, %]

i (f(x)?<(1- :1:)/1 (f'(t))%dt for any x € [%, 1].

2

1 1
1
(c)*®* Hence, or otherwise, prove that / (f(z))%dz < g/ (f'(x))?dz.
0 0

13. The various parts in this question are concerned with applications of the Arithmetico-geometrical Inequality. They are
independent of each other.

(a) Let n be an integer greater than 1. Suppose by, ba, - - , b, are positive real numbers.
by bo b1 by
P that — 4+ — 4+ --- — >n.
rove ab2+b3+ + b —l—bl_n

n+2 (n+ 1)"“”“)
> .

(b) i. Let n be a positive integer. Prove that T
n

n

m+k 1 m
ii. Hence deduce that (1 + ) > (1 + ) whenever m, k are positive integers.
m+k m

(¢) Let n be a positive integer.

1 1 1 1 1
i Provethat{—l——&—---—k }>

n |12 nn+1)] " /()2n+1)

2.3
ii. Hence deduce that (n!)? > (n 4+ 1)""1.

n
(d) Let a,as,--- ,a, be n positive numbers, and S = Zaj.
j=1

n2

n
i. Prove that > .
’; S—a, n-—1

ag n

n
ii. Hence, or otherwise, deduce that > .
]; S—a, n-—1

(e) Let the angles at the vertices A, B,C in AABC be «, (3,7 respectively. Suppose each angle in AABC' is an acute
angle.
i. Prove that cos?(a) + cos?(B) + cos?(y) = 1 — 2 cos(a) cos(f3) cos(7).
2

Remark. At some stage you may need express cos? (1) + cos?(v) in terms of cos(2u), cos(2v).

ii. Prove that cos?(a) cos?(8) cos?(vy) < 7



14. Here we are going to re-prove the Arithmetico-geometrical Inequality.
(a) Let a,b be real numbers. Suppose a <1 <b.
Prove that a + b > ab+ 1. Also prove that equality holds iff (a =1 or b=1).
(b)* Apply mathematical induction to verify the statement below:

(f) Let n be an integer greater than 1. Suppose ci,ca,- - , ¢, are positive real numbers. Further suppose
cicg ... ¢y =1. Thency +co+ -+ ¢, > n. Equality holds iff c; = co = -+ = ¢,.

Remark. At some stage of the ‘inductive argument’, you may need the result in part (a).

(c)<> By applying the result in the previous part, or otherwise, show that the statement below is true:

s

(1) Letn be an integer greater than 1. Suppose a1, ag, - ,a, are positive real numbers. Then (a1as - ... - a,) " <
ap+taz+---+a . .
! 2 " Equality holds iff a; = a3 = - -+ = a,,.
n

15. Here we are going to re-prove the Arithmetico-geometrical Inequality.

(a) Let n be an integer greater than 1. Let a,b be non-negative real numbers. Prove that (a + b)™ > a™ + na™~'b.
Also prove that equality holds iff b = 0.
(b) Let {z,}52, be an increasing infinite sequence of positive real numbers.
1 +2xo+ -+ Ty

For each positive integer n, define A4,, = , G = (z129 - - Ty)
n

3

i. Let m be a positive integer.
A.© Prove that Amg1 > A
B. Express %11 in the form P, A,,+1 — QmA, for some appropriate positive integers Py, Q,, (whose
values depend on m).
C.* Prove that Am+1m+1 > Ap"Tmt1. (Hint: Start by re-expressing A,,+1 as Am + (Amt1 — Am), and
apply the result in part (a).)
ii. Hence, or otherwise, prove that the statement below is true:
e Let n be a positive integer. A, > G,. Equality holds iff x1 = xog = -+ = xy,.

16. (a) Verify the statements below:

e b
l1+a ~ 1+0b
a+b < a n b '
l14a+b " 14a 140D

(b) Applying mathematical induction, or otherwise, prove the statement below:

i. Let a,b € IR. Suppose 0 < a < b. Then

ii. Let a,b € IR. Suppose a,b are non-negative. Then

o Let n € N\{0}. Suppose x1,x2, - ,x, are non-negative real numbers. Then
R R L TR
1+zi+z2+---+x,, = —~1+z
Jj=1
(c) Hence, or otherwise, prove the statement below:
o Let n € N\{0}. Suppose c1,ca,- - ,c, are non-negative real numbers. Then

n
CicyCn "ttt <3 "
1+0162"'Cn7n+01n+c2n+"'+cnn7],:177;“"0]'"

1 n 1
17. (a) Let n, k be positive integers. Suppose k < n. Verify that — ( 1 ) > R
n !
(b) Applying the Arithmetico-Geometrical Inequality together with the Binomial Theorem, or otherwise, prove the
statement below:

n n n r
S
e Let aj,as,- - ,a, be positive real numbers. Suppose s = Zan. Then H(l +ag) < Z g
j=1 k=1 r=0
n

(c) Let € IR. Suppose 0 < x < 1. For any n € N\{0}, define b,, = H (1+2").
k=1



i. Prove that {b,}52, is strictly increasing.

no.r
ii. Take for granted that Z p—' <P for any p>0 for anyn € N.
g
r=0
Prove that {b,}°2, is bounded above by e*/(1=%),

18. Let p be a positive integer.

(a) Let x be a real number. Suppose 0 < z < 1.

i. Prove that 1 + 2P > 2% 4 2P~" for each k = 0,1,2,--- , p.
ii.® Hence, or otherwise, deduce that (1 + x)? < 2P~1(1 + aP).

u+v)p< uP + vP

(b) Let u,v be positive real numbers. Prove that ( 5

(c)® Apply mathematical induction to justify the statement (1) below:

(1) Let n be a non-negative integer. Suppose a1, as,- - ,asn are positive real numbers. Then

<a1+a2+---+a2")p< a1? +agf + - - + agn?
2n - 2n ’

(d)* Hence, or otherwise, prove that the statement ({}) below is true:

(ft) Let n be a positive integer. Suppose a1,as,- - ,a, be positive real numbers. Then

<a1+a2+--~+an)p<a1p+a2”+~--+anf’

n n
Remark. Suppose p is a positive integer and ap, a9, ,a, are n positive real numbers. Then the number
</a11’ +a2? :L— e an? is called the mean power of aj,as, - ,a, of order p. (When p = 1, this number is the
arithmetic mean of a1, as, - - - , a,; when p = 2, this number is more often called the root-square-mean of a1, ag, - - , ay.)

What has proved here is that the mean power of a collection of finitely many positive real numbers of order p is greater
than or equal to the arithmetic mean of the same collection of numbers.

19. (a) Let z,y be positive real numbers. Prove that /(1 +x)(1 +y) > 14 /zy.
(b)® Apply mathematical induction to justify the statement (1) below:

(1) Let n € N. Suppose a1, as,- - ,asn are positive real numbers. Then

2"\/(1 + al)(l + CLQ) Cae (1 + CLQn) 2 1+ Q\n/CLlCLQ c ..t Agn

(c)*®* Hence, or otherwise, prove that the statement () below is true:

(1) Let n € N\{0,1}. Suppose a1, az,-- ,a, are positive real numbers. Then

V(A +a)(1+a) ... -(1+ap) > 14 Yarag ... an

(d) Hence, or otherwise, deduce the statement (4):

(8) Let n € N\{0,1}. Suppose uy,us,- - ,Un,v1,va, - ,v, are positive real numbers. Then

’{/(ul + 1) (ug +v2) oo s (Up +vp) = Yurts - oo Up + Y0102 o Uy

20.¢ Let a be a positive real number. For each n > 2, define
nook 2\ M. .k
a\n" @ @ @
an:(l—&-g), bn:;ﬁ, cn:(l—%);k!.

(a) Show that {b,}5°, is strictly increasing.



(b) i. By applying the Binomial Theorem, or otherwise, show that

n k N
an:R+Sa+Zj;:-T-(T—Tll> <T—Z>-...-(T—k1)

n
k=2

whenever n > 2. Here R, S,T are positive integers which are independent of n. You have to determine the
respective values of R, S, T explicitly.

ii. Deduce that a,, < b,, whenever n > 2.

aN

(1 —a/N)-(N)

042

iv. Also show that ¢, < a,, whenever n > T

ili. Show that b, < by_1 + whenever n > 2 and N > a.

(¢) Show that {a,}52, is strictly increasing.

21.Y Let S be a subset of R and o € IR. Suppose o is an upper bound of S in IR. Prove that the two statements below
are logically equivalent:

(t) For any 8 € R, if 3 is an upper bound of S in R then o < .
(1) For any positive real number e, there exists some x € S such that o — e < z.
Remark. We introduce/recall the definition for the notion of least upper bound of a set here:
Let S be a subset of R and o € R. o is said to be a least upper bound of S in R if both of the statements (LU1),
(LU2) are true:

(LU1) o is an upper bound of S in R.
(LU2) For any 8 € R, if 8 is an upper bound of S in R then o < 3.

We also introduce/recall the Least-upper-bound Axiom for the real number system:
Let S be a subset of R. Suppose S is non-empty and is bounded above in IR. Then S has a least upper bound.

What we have established in this question is an equivalent formulation for the definition for ‘least upper bound of a
set’: we may replace (LU2) by:

(LU2’) For any positive real number €, there exists some x € S such that o — e < x.

22. (a) Let « € R, and A = {x | x < a}. Verify the statements below:

i. Foranyz € A,y € R, ify < x then y € A.

ii. A#0Q.

ii. A+#R.

iv. For any x € A, there exists ' € A such that x < z’.

(b)? Let A be a subset of IR. Suppose Conditions (C1), (C2), (C3), (C4) are all satisfied:

(Cl) Foranyx € A, y € R, if y < x then y € A.
(C2) A#0.
(C3) A#R.
(C4) For any x € A, there exists ¥’ € A such that x < x’.

Prove that there exists some a € R such that A = {x | # < a}. (You will need the Least-upper-bound Aziom at
some stage in your arqument.)

Remark. What we have just proved is a characterization of half-open intervals.

23. (a) Prove the statements below:

i. Let o, B € Q. Suppose o < 3. Then there exists some r € Q such that o < r < 8.
ii. Let a, 8 € Q. Suppose o < 3. Then there exists some u € R\Q such that o < r < f.

Remark. Don’t think too hard.
(b)¥ Apply the Archimedean Principle and the Well-ordering Principle for Integers to prove the statement below:
(1) Let o, 8 € R. Suppose 8 > « > 0. Then there exists some r € Q such that a < r < §.



(Hint. Is it guaranteed that there is some positive integer, say, N for which the interval («, 8) will contain at
least two distinct fractions with denominator N and with integral numerators? If there is indeed such an integer

1
N, is it true that N < B—a?)

(c) Hence, or otherwise, prove the statements below:

i* Let a, B € R. Suppose oo < 3. Then there exists some r € Q such that a < r < .
Remark. It is an exercise on how to cleverly split an argument into various cases.

ii.¢ Let o, B € R. Suppose a < 8. Then there exists some r € IR\Q such that a < u < S.
(d) Prove the statements below:

i.* Suppose x € R. Then there exists some increasing infinite sequence of rational numbers {a, }°; such that

1
T <an <w for any n € N\{0}.

(Hint. First apply the Archimedean Principle to obtain some infinite sequence of rational numbers {¢,}>2,
which satisfies « — % < ¢p < z for any n € N\{0} but which is not necessarily increasing.)

ii.® Suppose x € R. Then there exists some decreasing infinite sequence of rational numbers {b,,}5, such that
x < by <x+% for any n € N\{0}.

(Hint. Make clever use of the result in the previous part.)

iii.* Suppose x € IR. Then there exist some infinite sequence of closed and bounded intervals {I,,}°2, such that
Conditions (N1), (N2), (N3), (N4) are all satisfied:

(N1) z € I, for any = € N\{0}.

1
(N2) For any n € N\{0}, the endpoints of I,, are rational numbers whose distance from each other is most —,
n

and neither endpoints of I, is x.
(N3) I,41 C I, for any n € N\{0}.
(N4) {u e R:u eI, for any n € N\{0}} = {z}.
(Hint. Apply the results in the two parts above.)



