
MATH1050 Exercise 8 Supplement

1. Let {an}∞n=0 be the infinite sequence of positive real numbers recursively defined by{
a0 =

√
2

an+1 =
√
2 + an for each n ∈ N

(a) i. Prove that {an}∞n=0 is strictly increasing.
ii. Prove that an < 2 for each n ∈ N.

iii. Prove that 2− a1
2− a0

≤ 2−
√
2

2
.

iv. Prove that 2− an ≤

(
2−

√
2

2

)n

(2−
√
2) for each n ∈ N.

(b) Now let {bn}∞n=0 be the infinite sequence of positive real numbers bn =
a0a1a2 · ... · an

2n+1
for each n ∈ N.

Name a lower bound for {bn}∞n=0, and justify your answer. Also prove that {bn}∞n=0 is strictly decreasing.

Remark. It follows from the Bounded-Monotone Theorem that lim
n→∞

bn exists. It turns out that lim
n→∞

bn =
2

π
.

This is known as Vieta’s formula for π.

2. Let 0 < α < 1 and {an}∞n=0 be the infinite sequence of positive real numbers recursively defined by
a0 = α

an+1 =

√
1 + an

2
for each n ∈ N

(a) i. Prove that 0 < an < 1 for each n ∈ N.
ii. Prove that {an}∞n=0 is strictly increasing.

(b) Let {bn}∞n=0 be the infinite sequence of positive real numbers defined by bn =

√
1− an

2
for each n ∈ N.

i. Prove that bn
2

< bn+1 <
bn√
2

for each n ∈ N.

ii. Hence, or otherwise, deduce that 0 < bn <

√
1− α

(
√
2)n+1

and 1− 1− α

2n
< an < 1 for each n ∈ N.

3. For any n ∈ N\{0}, define bn =

n∑
k=1

1

k
.

(a) Verify that {bn}∞n=1 is strictly increasing.

(b) i. Prove that for any m ∈ N, b2m+1 − b2m ≥ 1

2
.

ii.♢ Hence deduce that {bn}∞n=1 is not bounded above in R. (Hint. Apply the Telescopic Method.)
Remark. In the argument, you may apply the apparently ‘obviously true’ statement below:
• The set N is not bounded above in R.

4. Let S =

{
x

∣∣∣∣ x =
n+ 2

n+ 1
for some n ∈ N

}
.

(a) Prove that S has a greatest element.
(b) Prove that S does not have any least element.
(c) Prove that S is bounded below in R.

5. Let S =

{
x ∈ R : x =

1

3m
+

1

5n
for some m,n ∈ N

}
.

(a) Does S have any greatest element? Why?
(b) Does S have any least element? Why?
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(c) Is S bounded below in R? Why?

6. The various parts in this question are concerned with applications of the Cauchy-Schwarz Inequality. They are
independent of each other.

(a) Let a1, a2, · · · , an be positive real numbers. Prove the statements below:

i. a1
2 + a2

2 + · · ·+ an
2 ≥ a1a2 + a2a3 + · · ·+ an−1an + ana1.

ii. a1
2 + a2

2 + · · ·+ an
2 = a1a2 + a2a3 + · · ·+ an−1an + ana1 iff a1 = a2 = · · · = an.

(b) Let a1, a2, · · · , an be non-zero real numbers. Prove the statements below:

i. n2 ≤

(
n∑

k=1

ak
2

)(
n∑

k=1

1

ak2

)
.

ii. n2 =

(
n∑

k=1

ak
2

)(
n∑

k=1

1

ak2

)
iff |a1| = |a2| = · · · = |an|.

Remark. How about an argument using the Arithmetico-geometrical Inequality?
(c) Prove the statements below:

i. Suppose a1, a2, · · · , an, b1, b2, · · · , bn, c1, c2, · · · , cn, d1, d2, · · · , dn are real numbers. Then n∑
j=1

ajbjcjdj

4

≤

 n∑
j=1

aj
4

 n∑
j=1

bj
4

 n∑
j=1

cj
4

 n∑
j=1

dj
4

.

ii. Suppose r1, r2, · · · , rn, s1, s2, · · · , sn, t1, t2, · · · , tn are non-negative real numbers. Then n∑
j=1

rjsjtj

3

≤

 n∑
j=1

rj
3

 n∑
j=1

sj
3

 n∑
j=1

tj
3

.

7. (a) Let a1, a2, · · · , an be positive real numbers. Let m be a non-negative integer.

Prove that

 n∑
j=1

aj
m+1

2

≤

 n∑
j=1

aj
m

 n∑
j=1

aj
m+2

.

Remark. You may need the Cauchy-Schwarz Inequality.

(b)♢ Let b1, b2, · · · , bn be positive real numbers. Suppose
n∑

j=1

bj = 1.

By applying the results in the previous part, or otherwise, prove that
n∑

j=1

bj
p ≤ n

n∑
j=1

bj
p+1 for each non-negative

integer p.
(c)♢ Let c1, c2, · · · , cn be positive real numbers.

By applying the results in the previous part, or otherwise, prove that

 n∑
j=1

cj

 n∑
j=1

cj
r

 ≤ n

n∑
j=1

cj
r+1 for each

non-negative integer r.

8. In this question, you may need apply the Cauchy-Schwarz Inequality more than once.

(a) Let a1, a2, · · · , an be real numbers. Prove that 1

n

(
n∑

k=1

ak

)2

≤
n∑

k=1

ak
2.

(b) Let b1, b2, · · · , bn, c1, c2, · · · , cn are real numbers. Further suppose that b1, b2, · · · , bn are positive.

Prove that
(

n∑
k=1

bkck

)2

≤

(
n∑

k=1

bk

) n∑
j=1

bjcj
2

.

(c)♢ Let r ≥ 2, and x1, x2, · · · , xn be real numbers which are not all zero.

By applying the results in the previous part, or otherwise, prove that
(

n∑
k=1

xk

rk

)2

<

n∑
k=1

xk
2

rk
.
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9. (a) Let a1, a2, · · · , an, b1, b2, · · · , bn be non-zero real numbers.

i. Let p, q be real numbers. Suppose p ≤ bk
ak

≤ q for each k = 1, 2, · · · , n.

Prove that (p+ q)

n∑
k=1

akbk ≥
n∑

k=1

bk
2 + pq

n∑
k=1

ak
2.

ii. Let m,M be real numbers. Suppose 0 < m ≤ ak ≤ M and 0 < m ≤ bk ≤ M for each k = 1, 2, · · · , n.
By applying the result in the previous part, or otherwise, prove that(

n∑
k=1

ak
2

)(
n∑

k=1

bk
2

)
≤ 1

4

(
M

m
+

m

M

)2
(

n∑
k=1

akbk

)2

.

(b)♢ Apply the results in the previous part, together with the Cauchy-Schwarz Inequality, or otherwise, prove that
for each positive integer n,(

n+
1

9

)2

<

[
n∑

k=1

(
1 +

1

3k

)2
][

n∑
k=1

(
1− 1

3k+1

)2
]
<

169

144

(
n+

1

3

)2

.

10.♢ In this question you are assumed to be familiar with calculus of one real variable.
Take for granted the validity of the result below about definite integrals:

• Let a, b be real numbers, with a < b, and let h be a real-valued function of one real variable whose domain
contains the interval [a, b]. Suppose h is continuous on [a, b]. Further suppose that h(x) ≥ 0 for any x ∈ [a, b].

Then
∫ b

a

h(t)dt ≥ 0. Moreover, equality holds iff h(x) = 0 for any x ∈ [a, b].

(a) Prove the statement below, which is the ‘inequality part’ in the result known as Cauchy-Schwarz Inequality
for definite integrals:
• Suppose f, g : (α, β) −→ R are continuous functions. Then, whenever α < a < b < β,∣∣∣∣∣

∫ b

a

f(u)g(u)du

∣∣∣∣∣ ≤
(∫ b

a

|f(u)|2du

) 1
2
(∫ b

a

|g(u)|2du

) 1
2

.

(b) Prove the statement below, which is the ‘inequality part’ in the result known as Triangle Inequality for
definite integrals:
• Suppose f, g : (α, β) −→ R are continuous functions. Then, whenever α < a < b < β,√∫ b

a

|f(u) + g(u)|2du ≤

√∫ b

a

|f(u)|2du+

√∫ b

a

|g(u)|2du.

11. In this question you are assumed to be familiar with calculus of one real variable.
Let a, b ∈ R, with a < b, and f be a real-valued function of one real variable which is twice-continuously differentiable
on an open interval which contains the closed and bounded interval [a, b] entirely. Suppose f(a) = f(b) = 0.

(a) Verify that
∫ b

a

f(x)f ′′(x)dx = −
∫ b

a

(f ′(x))2dx.

(b) Here we suppose that
∫ b

a

(f(x))2dx = 1.

i. Prove that
∫ b

a

xf(x)f ′(x)dx = −1

2
.

ii.♢ By applying the Cauchy-Schwarz Inequality, or otherwise, deduce that(∫ b

a

(f ′(x))2dx

)(∫ b

a

u2(f(u))2du

)
≥ 1

4
.

(c) Here we no longer suppose that
∫ b

a

(f(x))2dx = 1. We only suppose that f is not constant on [a, b].

Take for granted that
∫ b

a

|f(x)|2dx > 0.
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i.♡ Prove that
(∫ b

a

(f ′(x))2dx

)(∫ b

a

u2(f(u))2du

)
≥ 1

4

(∫ b

a

(f(x))2dx

)2

.

ii.♣ Hence, or otherwise, prove that
(∫ b

a

(f ′′(x))2dx

)(∫ b

a

u2(f(u))2du

)2

≥ 1

16

(∫ b

a

(f(x))2dx

)3

.

(Hint. At some stage of the argument, you may need the Cauchy-Schwarz Inequality.)

12. In this question you are assumed to be familiar with calculus of one real variable.
Take for granted the validity of the result below about definite integrals:

• Let a, b be real numbers, with a < b, and let g, h be real-valued functions of one real variable whose domains
contain the interval [a, b]. Suppose g, h are continuous on [a, b]. Further suppose that g(x) ≤ h(x) for any

x ∈ [a, b]. Then
∫ b

a

g(t)dt ≤
∫ b

a

h(t)dt.

Let f : R −→ R be a function. Suppose f is continuously differentiable function on R. Suppose f(0) = 0 and f(1) = 0.

(a) Prove that f(x) =

∫ x

0

f ′(t)dt = −
∫ 1

x

f ′(t)dt for any x ∈ [0, 1].

(b)♣ By applying the Cauchy-Schwarz Inequality, or otherwise, prove the statements below:

i. (f(x))2 ≤ x

∫ 1
2

0

(f ′(t))2dt for any x ∈ [0,
1

2
].

ii. (f(x))2 ≤ (1− x)

∫ 1

1
2

(f ′(t))2dt for any x ∈ [
1

2
, 1].

(c)♣ Hence, or otherwise, prove that
∫ 1

0

(f(x))2dx ≤ 1

8

∫ 1

0

(f ′(x))2dx.

13. The various parts in this question are concerned with applications of the Arithmetico-geometrical Inequality. They are
independent of each other.

(a) Let n be an integer greater than 1. Suppose b1, b2, · · · , bn are positive real numbers.

Prove that b1
b2

+
b2
b3

+ · · ·+ bn−1

bn
+

bn
b1

≥ n.

(b) i. Let n be a positive integer. Prove that n+ 2

n+ 1
>

(
n+ 1

n

)n/(n+1)

.

ii. Hence deduce that
(
1 +

1

m+ k

)m+k

>

(
1 +

1

m

)m

whenever m, k are positive integers.

(c) Let n be a positive integer.

i. Prove that 1

n

[
1

1 · 2
+

1

2 · 3
+ · · ·+ 1

n(n+ 1)

]
>

1
n
√

(n!)2(n+ 1)
.

ii. Hence deduce that (n!)2 > (n+ 1)n−1.

(d) Let a1, a2, · · · , an be n positive numbers, and S =

n∑
j=1

aj .

i. Prove that
n∑

k=1

S

S − ak
≥ n2

n− 1
.

ii. Hence, or otherwise, deduce that
n∑

k=1

ak
S − ak

≥ n

n− 1
.

(e) Let the angles at the vertices A,B,C in △ABC be α, β, γ respectively. Suppose each angle in △ABC is an acute
angle.

i. Prove that cos2(α) + cos2(β) + cos2(γ) = 1− 2 cos(α) cos(β) cos(γ).
Remark. At some stage you may need express cos2(µ) + cos2(ν) in terms of cos(2µ), cos(2ν).

ii. Prove that cos2(α) cos2(β) cos2(γ) <
1

27
.
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14. Here we are going to re-prove the Arithmetico-geometrical Inequality.

(a) Let a, b be real numbers. Suppose a ≤ 1 ≤ b.
Prove that a+ b ≥ ab+ 1. Also prove that equality holds iff (a = 1 or b = 1).

(b)♣ Apply mathematical induction to verify the statement below:
(†) Let n be an integer greater than 1. Suppose c1, c2, · · · , cn are positive real numbers. Further suppose

c1c2 · ... · cn = 1. Then c1 + c2 + · · ·+ cn ≥ n. Equality holds iff c1 = c2 = · · · = cn.
Remark. At some stage of the ‘inductive argument’, you may need the result in part (a).

(c)♢ By applying the result in the previous part, or otherwise, show that the statement below is true:

(‡) Let n be an integer greater than 1. Suppose a1, a2, · · · , an are positive real numbers. Then (a1a2 · ... · an)
1
n ≤

a1 + a2 + · · ·+ an
n

. Equality holds iff a1 = a2 = · · · = an.

15. Here we are going to re-prove the Arithmetico-geometrical Inequality.

(a) Let n be an integer greater than 1. Let a, b be non-negative real numbers. Prove that (a+ b)n ≥ an + nan−1b.
Also prove that equality holds iff b = 0.

(b) Let {xn}∞n=1 be an increasing infinite sequence of positive real numbers.

For each positive integer n, define An =
x1 + x2 + · · ·+ xn

n
, Gn = (x1x2 · ... · xn)

1
n .

i. Let m be a positive integer.
A.♢ Prove that Am+1 ≥ Am.
B. Express xm+1 in the form PmAm+1 − QmAm for some appropriate positive integers Pm, Qm (whose

values depend on m).
C.♣ Prove that Am+1

m+1 ≥ Am
mxm+1. (Hint: Start by re-expressing Am+1 as Am + (Am+1 − Am), and

apply the result in part (a).)
ii. Hence, or otherwise, prove that the statement below is true:

• Let n be a positive integer. An ≥ Gn. Equality holds iff x1 = x2 = · · · = xn.

16. (a) Verify the statements below:

i. Let a, b ∈ R. Suppose 0 ≤ a < b. Then a

1 + a
≤ b

1 + b
.

ii. Let a, b ∈ R. Suppose a, b are non-negative. Then a+ b

1 + a+ b
≤ a

1 + a
+

b

1 + b
.

(b) Applying mathematical induction, or otherwise, prove the statement below:
• Let n ∈ N\{0}. Suppose x1, x2, · · · , xn are non-negative real numbers. Then

x1 + x2 + · · ·+ xn

1 + x1 + x2 + · · ·+ xn
≤

n∑
j=1

xj

1 + xj
.

(c) Hence, or otherwise, prove the statement below:
• Let n ∈ N\{0}. Suppose c1, c2, · · · , cn are non-negative real numbers. Then

c1c2 · · · cn
1 + c1c2 · · · cn

≤ c1
n + c2

n + · · ·+ cn
n

n+ c1n + c2n + · · ·+ cnn
≤

n∑
j=1

cj
n

n+ cjn
.

17. (a) Let n, k be positive integers. Suppose k ≤ n. Verify that 1

nk

(
n

k

)
≥ 1

k!
.

(b) Applying the Arithmetico-Geometrical Inequality together with the Binomial Theorem, or otherwise, prove the
statement below:

• Let a1, a2, · · · , an be positive real numbers. Suppose s =

n∑
j=1

an. Then
n∏

k=1

(1 + ak) ≤
n∑

r=0

sr

r!
.

(c) Let x ∈ R. Suppose 0 < x < 1. For any n ∈ N\{0}, define bn =

n∏
k=1

(
1 + xk

)
.
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i. Prove that {bn}∞n=1 is strictly increasing.

ii. Take for granted that
n∑

r=0

pr

r!
≤ ep for any p > 0 for any n ∈ N.

Prove that {bn}∞n=1 is bounded above by ex/(1−x).

18. Let p be a positive integer.

(a) Let x be a real number. Suppose 0 ≤ x ≤ 1.

i. Prove that 1 + xp ≥ xk + xp−k for each k = 0, 1, 2, · · · , p.
ii.♢ Hence, or otherwise, deduce that (1 + x)p ≤ 2p−1(1 + xp).

(b) Let u, v be positive real numbers. Prove that
(
u+ v

2

)p

≤ up + vp

2
.

(c)♢ Apply mathematical induction to justify the statement (↑) below:
(↑) Let n be a non-negative integer. Suppose a1, a2, · · · , a2n are positive real numbers. Then(

a1 + a2 + · · ·+ a2n

2n

)p

≤ a1
p + a2

p + · · ·+ a2n
p

2n
.

(d)♣ Hence, or otherwise, prove that the statement (⇑) below is true:
(⇑) Let n be a positive integer. Suppose a1, a2, · · · , an be positive real numbers. Then(

a1 + a2 + · · ·+ an
n

)p

≤ a1
p + a2

p + · · ·+ an
p

n
.

Remark. Suppose p is a positive integer and a1, a2, · · · , an are n positive real numbers. Then the number
p

√
a1p + a2p + · · ·+ anp

n
is called the mean power of a1, a2, · · · , an of order p. (When p = 1, this number is the

arithmetic mean of a1, a2, · · · , an; when p = 2, this number is more often called the root-square-mean of a1, a2, · · · , an.)
What has proved here is that the mean power of a collection of finitely many positive real numbers of order p is greater
than or equal to the arithmetic mean of the same collection of numbers.

19. (a) Let x, y be positive real numbers. Prove that
√
(1 + x)(1 + y) ≥ 1 +

√
xy.

(b)♢ Apply mathematical induction to justify the statement (↑) below:
(↑) Let n ∈ N. Suppose a1, a2, · · · , a2n are positive real numbers. Then

2n
√

(1 + a1)(1 + a2) · ... · (1 + a2n) ≥ 1 + 2n
√
a1a2 · ... · a2n

.
(c)♣ Hence, or otherwise, prove that the statement (⇑) below is true:

(⇑) Let n ∈ N\{0, 1}. Suppose a1, a2, · · · , an are positive real numbers. Then

n
√
(1 + a1)(1 + a2) · ... · (1 + an) ≥ 1 + n

√
a1a2 · ... · an

.
(d) Hence, or otherwise, deduce the statement (♯):

(♯) Let n ∈ N\{0, 1}. Suppose u1, u2, · · · , un, v1, v2, · · · , vn are positive real numbers. Then

n
√

(u1 + v1)(u2 + v2) · ... · (un + vn) ≥ n
√
u1u2 · ... · un + n

√
v1v2 · ... · vn

20.♢ Let α be a positive real number. For each n ≥ 2, define

an =
(
1 +

α

n

)n
, bn =

n∑
k=0

αk

k!
, cn =

(
1− α2

2n

) n∑
k=0

αk

k!
.

(a) Show that {bn}∞n=2 is strictly increasing.
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(b) i. By applying the Binomial Theorem, or otherwise, show that

an = R+ Sα+

n∑
k=2

Tαk

k!
· T ·

(
T − 1

n

)(
T − 2

n

)
· ... ·

(
T − k − 1

n

)

whenever n ≥ 2. Here R,S, T are positive integers which are independent of n. You have to determine the
respective values of R,S, T explicitly.

ii. Deduce that an < bn whenever n ≥ 2.

iii. Show that bn ≤ bN−1 +
αN

(1− α/N) · (N !)
whenever n ≥ 2 and N > α.

iv. Also show that cn < an whenever n ≥ α2

2
.

(c) Show that {an}∞n=2 is strictly increasing.

21.♡ Let S be a subset of R and σ ∈ R. Suppose σ is an upper bound of S in R. Prove that the two statements below
are logically equivalent:

(†) For any β ∈ R, if β is an upper bound of S in R then σ ≤ β.
(‡) For any positive real number ε, there exists some x ∈ S such that σ − ε < x.

Remark. We introduce/recall the definition for the notion of least upper bound of a set here:

Let S be a subset of R and σ ∈ R. σ is said to be a least upper bound of S in R if both of the statements (LU1),
(LU2) are true:

(LU1) σ is an upper bound of S in R.
(LU2) For any β ∈ R, if β is an upper bound of S in R then σ ≤ β.

We also introduce/recall the Least-upper-bound Axiom for the real number system:

Let S be a subset of R. Suppose S is non-empty and is bounded above in R. Then S has a least upper bound.

What we have established in this question is an equivalent formulation for the definition for ‘least upper bound of a
set’: we may replace (LU2) by:

(LU2’) For any positive real number ε, there exists some x ∈ S such that σ − ε < x.

22. (a) Let α ∈ R, and A = {x | x < α}. Verify the statements below:
i. For any x ∈ A, y ∈ R, if y < x then y ∈ A.
ii. A ̸= ∅.
iii. A ̸= R.
iv. For any x ∈ A, there exists x′ ∈ A such that x < x′.

(b)♡ Let A be a subset of R. Suppose Conditions (C1), (C2), (C3), (C4) are all satisfied:
(C1) For any x ∈ A, y ∈ R, if y < x then y ∈ A.
(C2) A ̸= ∅.
(C3) A ̸= R.
(C4) For any x ∈ A, there exists x′ ∈ A such that x < x′.

Prove that there exists some α ∈ R such that A = {x | x < α}. (You will need the Least-upper-bound Axiom at
some stage in your argument.)

Remark. What we have just proved is a characterization of half-open intervals.

23. (a) Prove the statements below:
i. Let α, β ∈ Q. Suppose α < β. Then there exists some r ∈ Q such that α < r < β.
ii. Let α, β ∈ Q. Suppose α < β. Then there exists some u ∈ R\Q such that α < r < β.

Remark. Don’t think too hard.
(b)♡ Apply the Archimedean Principle and the Well-ordering Principle for Integers to prove the statement below:

(♮) Let α, β ∈ R. Suppose β > α > 0. Then there exists some r ∈ Q such that α < r < β.
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(Hint. Is it guaranteed that there is some positive integer, say, N for which the interval (α, β) will contain at
least two distinct fractions with denominator N and with integral numerators? If there is indeed such an integer

N , is it true that 1

N
< β − α?)

(c) Hence, or otherwise, prove the statements below:

i.♣ Let α, β ∈ R. Suppose α < β. Then there exists some r ∈ Q such that α < r < β.
Remark. It is an exercise on how to cleverly split an argument into various cases.

ii.♢ Let α, β ∈ R. Suppose α < β. Then there exists some r ∈ R\Q such that α < u < β.
(d) Prove the statements below:

i.♣ Suppose x ∈ R. Then there exists some increasing infinite sequence of rational numbers {an}∞n=1 such that

x− 1

2n
< an < x for any n ∈ N\{0}.

(Hint. First apply the Archimedean Principle to obtain some infinite sequence of rational numbers {cn}∞n=0

which satisfies x− 1

2n
< cn < x for any n ∈ N\{0} but which is not necessarily increasing.)

ii.♢ Suppose x ∈ R. Then there exists some decreasing infinite sequence of rational numbers {bn}∞n=1 such that

x < bn < x+
1

2n
for any n ∈ N\{0}.

(Hint. Make clever use of the result in the previous part.)
iii.♣ Suppose x ∈ R. Then there exist some infinite sequence of closed and bounded intervals {In}∞n=1 such that

Conditions (N1), (N2), (N3), (N4) are all satisfied:
(N1) x ∈ In for any x ∈ N\{0}.

(N2) For any n ∈ N\{0}, the endpoints of In are rational numbers whose distance from each other is most 1

n
,

and neither endpoints of In is x.
(N3) In+1 ⊂ In for any n ∈ N\{0}.
(N4) {u ∈ R : u ∈ In for any n ∈ N\{0}} = {x}.

(Hint. Apply the results in the two parts above.)
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