MATH1050 Exercise 8 Supplement

1. Let $\{a_n\}_{n=0}^{\infty}$ be the infinite sequence of positive real numbers recursively defined by

$$\begin{cases} a_0 &= \sqrt{2} \\ a_{n+1} &= \sqrt{2+a_n} & \text{for each } n \in \mathbb{N} \end{cases}$$

- (a) i. Prove that $\{a_n\}_{n=0}^{\infty}$ is strictly increasing.
 - ii. Prove that $a_n < 2$ for each $n \in \mathbb{N}$.

iii. Prove that
$$\frac{2-a_1}{2-a_0} \le \frac{2-\sqrt{2}}{2}$$
.
iv. Prove that $2-a_n \le \left(\frac{2-\sqrt{2}}{2}\right)^n (2-\sqrt{2})$ for each $n \in \mathbb{N}$.

(b) Now let $\{b_n\}_{n=0}^{\infty}$ be the infinite sequence of positive real numbers $b_n = \frac{a_0 a_1 a_2 \cdot \ldots \cdot a_n}{2^{n+1}}$ for each $n \in \mathbb{N}$. Name a lower bound for $\{b_n\}_{n=0}^{\infty}$, and justify your answer. Also prove that $\{b_n\}_{n=0}^{\infty}$ is strictly decreasing. **Remark.** It follows from the Bounded-Monotone Theorem that $\lim_{n \to \infty} b_n$ exists. It turns out that $\lim_{n \to \infty} b_n = \frac{2}{\pi}$. This is known as **Vieta's formula for** π .

2. Let $0 < \alpha < 1$ and $\{a_n\}_{n=0}^{\infty}$ be the infinite sequence of positive real numbers recursively defined by

$$\begin{cases} a_0 &= \alpha \\ a_{n+1} &= \sqrt{\frac{1+a_n}{2}} \quad \text{for each } n \in \mathbb{N} \end{cases}$$

(a) i. Prove that 0 < a_n < 1 for each n ∈ N.
ii. Prove that {a_n}_{n=0}[∞] is strictly increasing.

(b) Let $\{b_n\}_{n=0}^{\infty}$ be the infinite sequence of positive real numbers defined by $b_n = \sqrt{\frac{1-a_n}{2}}$ for each $n \in \mathbb{N}$.

i. Prove that $\frac{b_n}{2} < b_{n+1} < \frac{b_n}{\sqrt{2}}$ for each $n \in \mathbb{N}$.

ii. Hence, or otherwise, deduce that $0 < b_n < \frac{\sqrt{1-\alpha}}{(\sqrt{2})^{n+1}}$ and $1 - \frac{1-\alpha}{2^n} < a_n < 1$ for each $n \in \mathbb{N}$.

3. For any $n \in \mathbb{N} \setminus \{0\}$, define $b_n = \sum_{k=1}^n \frac{1}{k}$.

- (a) Verify that $\{b_n\}_{n=1}^{\infty}$ is strictly increasing.
- (b) i. Prove that for any $m \in \mathbb{N}$, $b_{2^{m+1}} b_{2^m} \ge \frac{1}{2}$.
 - ii.^{\diamond} Hence deduce that $\{b_n\}_{n=1}^{\infty}$ is not bounded above in \mathbb{R} . (*Hint.* Apply the Telescopic Method.) **Remark.** In the argument, you may apply the apparently 'obviously true' statement below:
 - The set N is not bounded above in $\mathbb{R}.$

4. Let $S = \left\{ x \mid x = \frac{n+2}{n+1} \text{ for some } n \in \mathbb{N} \right\}.$

- (a) Prove that S has a greatest element.
- (b) Prove that S does not have any least element.
- (c) Prove that S is bounded below in \mathbb{R} .

5. Let
$$S = \left\{ x \in \mathbb{R} : x = \frac{1}{3^m} + \frac{1}{5^n} \text{ for some } m, n \in \mathbb{N} \right\}.$$

- (a) Does S have any greatest element? Why?
- (b) Does S have any least element? Why?

(c) Is S bounded below in \mathbb{R} ? Why?

- 6. The various parts in this question are concerned with applications of the Cauchy-Schwarz Inequality. They are independent of each other.
 - (a) Let a_1, a_2, \dots, a_n be positive real numbers. Prove the statements below:

i.
$$a_1^2 + a_2^2 + \dots + a_n^2 \ge a_1 a_2 + a_2 a_3 + \dots + a_{n-1} a_n + a_n a_1$$
.
ii. $a_1^2 + a_2^2 + \dots + a_n^2 = a_1 a_2 + a_2 a_3 + \dots + a_{n-1} a_n + a_n a_1$ iff $a_1 = a_2 = \dots = a_n$.

(b) Let a_1, a_2, \dots, a_n be non-zero real numbers. Prove the statements below:

i.
$$n^2 \leq \left(\sum_{k=1}^n a_k^2\right) \left(\sum_{k=1}^n \frac{1}{a_k^2}\right).$$

ii. $n^2 = \left(\sum_{k=1}^n a_k^2\right) \left(\sum_{k=1}^n \frac{1}{a_k^2}\right)$ iff $|a_1| = |a_2| = \dots = |a_n|.$

Remark. How about an argument using the Arithmetico-geometrical Inequality?

- (c) Prove the statements below:
 - i. Suppose $a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n, c_1, c_2, \dots, c_n, d_1, d_2, \dots, d_n$ are real numbers. Then

$$\left(\sum_{j=1}^n a_j b_j c_j d_j\right)^4 \le \left(\sum_{j=1}^n a_j^4\right) \left(\sum_{j=1}^n b_j^4\right) \left(\sum_{j=1}^n c_j^4\right) \left(\sum_{j=1}^n d_j^4\right).$$

ii. Suppose $r_1, r_2, \dots, r_n, s_1, s_2, \dots, s_n, t_1, t_2, \dots, t_n$ are non-negative real numbers. Then

$$\left(\sum_{j=1}^{n} r_j s_j t_j\right)^3 \le \left(\sum_{j=1}^{n} r_j^3\right) \left(\sum_{j=1}^{n} s_j^3\right) \left(\sum_{j=1}^{n} t_j^3\right).$$

7. (a) Let a_1, a_2, \dots, a_n be positive real numbers. Let m be a non-negative integer.

Prove that
$$\left(\sum_{j=1}^{n} a_j^{m+1}\right)^2 \leq \left(\sum_{j=1}^{n} a_j^m\right) \left(\sum_{j=1}^{n} a_j^{m+2}\right).$$

Remark. You may need the Cauchy-Schwarz Inequality.

n

(b) \diamond Let b_1, b_2, \dots, b_n be positive real numbers. Suppose $\sum_{j=1}^{n} b_j = 1$.

By applying the results in the previous part, or otherwise, prove that $\sum_{j=1}^{n} b_j^{p} \leq n \sum_{j=1}^{n} b_j^{p+1}$ for each non-negative integer p.

(c) \diamond Let c_1, c_2, \cdots, c_n be positive real numbers.

By applying the results in the previous part, or otherwise, prove that $\left(\sum_{j=1}^{n} c_{j}\right) \left(\sum_{j=1}^{n} c_{j}^{r}\right) \leq n \sum_{j=1}^{n} c_{j}^{r+1}$ for each non-negative integer r.

- 8. In this question, you may need apply the Cauchy-Schwarz Inequality more than once.
 - (a) Let a_1, a_2, \dots, a_n be real numbers. Prove that $\frac{1}{n} \left(\sum_{k=1}^n a_k \right)^2 \le \sum_{k=1}^n a_k^2$.
 - (b) Let $b_1, b_2, \dots, b_n, c_1, c_2, \dots, c_n$ are real numbers. Further suppose that b_1, b_2, \dots, b_n are positive.

Prove that
$$\left(\sum_{k=1}^{n} b_k c_k\right)^2 \leq \left(\sum_{k=1}^{n} b_k\right) \left(\sum_{j=1}^{n} b_j c_j^2\right)$$

(c) \diamond Let $r \geq 2$, and x_1, x_2, \cdots, x_n be real numbers which are not all zero.

By applying the results in the previous part, or otherwise, prove that $\left(\sum_{k=1}^{n} \frac{x_k}{r^k}\right)^2 < \sum_{k=1}^{n} \frac{x_k^2}{r^k}$.

- 9. (a) Let $a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n$ be non-zero real numbers.
 - i. Let p, q be real numbers. Suppose $p \le \frac{b_k}{a_k} \le q$ for each $k = 1, 2, \cdots, n$.

Prove that
$$(p+q)\sum_{k=1}^{n} a_k b_k \ge \sum_{k=1}^{n} b_k^2 + pq \sum_{k=1}^{n} a_k^2$$
.

ii. Let m, M be real numbers. Suppose $0 < m \le a_k \le M$ and $0 < m \le b_k \le M$ for each $k = 1, 2, \dots, n$. By applying the result in the previous part, or otherwise, prove that

$$\left(\sum_{k=1}^{n} a_k^2\right) \left(\sum_{k=1}^{n} b_k^2\right) \le \frac{1}{4} \left(\frac{M}{m} + \frac{m}{M}\right)^2 \left(\sum_{k=1}^{n} a_k b_k\right)^2.$$

(b) \diamond Apply the results in the previous part, together with the Cauchy-Schwarz Inequality, or otherwise, prove that for each positive integer n,

$$\left(n+\frac{1}{9}\right)^2 < \left[\sum_{k=1}^n \left(1+\frac{1}{3^k}\right)^2\right] \left[\sum_{k=1}^n \left(1-\frac{1}{3^{k+1}}\right)^2\right] < \frac{169}{144} \left(n+\frac{1}{3}\right)^2.$$

 $10.^{\diamond}$ In this question you are assumed to be familiar with calculus of one real variable.

Take for granted the validity of the result below about definite integrals:

- Let a, b be real numbers, with a < b, and let h be a real-valued function of one real variable whose domain contains the interval [a, b]. Suppose h is continuous on [a, b]. Further suppose that $h(x) \ge 0$ for any $x \in [a, b]$. Then $\int_{a}^{b} h(t)dt \ge 0$. Moreover, equality holds iff h(x) = 0 for any $x \in [a, b]$.
- (a) Prove the statement below, which is the 'inequality part' in the result known as **Cauchy-Schwarz Inequality** for definite integrals:
 - Suppose $f, g: (\alpha, \beta) \longrightarrow \mathbb{R}$ are continuous functions. Then, whenever $\alpha < a < b < \beta$,

$$\left| \int_{a}^{b} f(u)g(u)du \right| \leq \left(\int_{a}^{b} |f(u)|^{2} du \right)^{\frac{1}{2}} \left(\int_{a}^{b} |g(u)|^{2} du \right)^{\frac{1}{2}}.$$

- (b) Prove the statement below, which is the 'inequality part' in the result known as **Triangle Inequality for definite integrals**:
 - Suppose $f, g: (\alpha, \beta) \longrightarrow \mathbb{R}$ are continuous functions. Then, whenever $\alpha < a < b < \beta$,

$$\sqrt{\int_{a}^{b} |f(u) + g(u)|^{2} du} \leq \sqrt{\int_{a}^{b} |f(u)|^{2} du} + \sqrt{\int_{a}^{b} |g(u)|^{2} du}$$

11. In this question you are assumed to be familiar with calculus of one real variable.

Let $a, b \in \mathbb{R}$, with a < b, and f be a real-valued function of one real variable which is twice-continuously differentiable on an open interval which contains the closed and bounded interval [a, b] entirely. Suppose f(a) = f(b) = 0.

(a) Verify that
$$\int_a^b f(x)f''(x)dx = -\int_a^b (f'(x))^2 dx$$

(b) Here we suppose that $\int_{a}^{b} (f(x))^{2} dx = 1.$

i. Prove that
$$\int_{a}^{b} xf(x)f'(x)dx = -\frac{1}{2}$$
.

ii. \diamond By applying the Cauchy-Schwarz Inequality, or otherwise, deduce that

$$\left(\int_{a}^{b} (f'(x))^{2} dx\right) \left(\int_{a}^{b} u^{2} (f(u))^{2} du\right) \geq \frac{1}{4}$$

(c) Here we no longer suppose that $\int_{a}^{b} (f(x))^{2} dx = 1$. We only suppose that f is not constant on [a, b].

Take for granted that $\int_{a}^{b} |f(x)|^{2} dx > 0.$

$$\text{i.}^{\heartsuit} \text{ Prove that } \left(\int_{a}^{b} (f'(x))^{2} dx \right) \left(\int_{a}^{b} u^{2} (f(u))^{2} du \right) \geq \frac{1}{4} \left(\int_{a}^{b} (f(x))^{2} dx \right)^{2}.$$

$$\text{ii.} \quad \text{Hence, or otherwise, prove that } \left(\int_{a}^{b} (f''(x))^{2} dx \right) \left(\int_{a}^{b} u^{2} (f(u))^{2} du \right)^{2} \geq \frac{1}{16} \left(\int_{a}^{b} (f(x))^{2} dx \right)^{3}.$$

(*Hint.* At some stage of the argument, you may need the Cauchy-Schwarz Inequality.)

12. In this question you are assumed to be familiar with calculus of one real variable.

Take for granted the validity of the result below about definite integrals:

• Let a, b be real numbers, with a < b, and let g, h be real-valued functions of one real variable whose domains contain the interval [a, b]. Suppose g, h are continuous on [a, b]. Further suppose that $g(x) \le h(x)$ for any $x \in [a, b]$. Then $\int_{a}^{b} g(t)dt \le \int_{a}^{b} h(t)dt$.

Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a function. Suppose f is continuously differentiable function on \mathbb{R} . Suppose f(0) = 0 and f(1) = 0.

(a) Prove that
$$f(x) = \int_0^x f'(t)dt = -\int_x^1 f'(t)dt$$
 for any $x \in [0, 1]$

 $(b)^{\clubsuit}$ By applying the Cauchy-Schwarz Inequality, or otherwise, prove the statements below:

i.
$$(f(x))^2 \le x \int_0^{\frac{1}{2}} (f'(t))^2 dt$$
 for any $x \in [0, \frac{1}{2}]$.
ii. $(f(x))^2 \le (1-x) \int_{\frac{1}{2}}^1 (f'(t))^2 dt$ for any $x \in [\frac{1}{2}, 1]$.

(c) Hence, or otherwise, prove that $\int_0^1 (f(x))^2 dx \le \frac{1}{8} \int_0^1 (f'(x))^2 dx$.

- 13. The various parts in this question are concerned with applications of the Arithmetico-geometrical Inequality. They are independent of each other.
 - (a) Let n be an integer greater than 1. Suppose b_1, b_2, \dots, b_n are positive real numbers.

Prove that
$$\frac{b_1}{b_2} + \frac{b_2}{b_3} + \dots + \frac{b_{n-1}}{b_n} + \frac{b_n}{b_1} \ge n.$$

(b) i. Let *n* be a positive integer. Prove that $\frac{n+2}{n+1} > \left(\frac{n+1}{n}\right)^{n/(n+1)}$.

ii. Hence deduce that $\left(1 + \frac{1}{m+k}\right)^{m+k} > \left(1 + \frac{1}{m}\right)^m$ whenever m, k are positive integers.

- (c) Let n be a positive integer.
 - i. Prove that $\frac{1}{n} \left[\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n+1)} \right] > \frac{1}{\sqrt[n]{(n!)^2(n+1)}}.$ ii. Hence deduce that $(n!)^2 > (n+1)^{n-1}.$

(d) Let a_1, a_2, \dots, a_n be *n* positive numbers, and $S = \sum_{j=1}^n a_j$.

i. Prove that $\sum_{k=1}^{n} \frac{S}{S-a_k} \ge \frac{n^2}{n-1}.$

ii. Hence, or otherwise, deduce that $\sum_{k=1}^{n} \frac{a_k}{S - a_k} \ge \frac{n}{n-1}$.

- (e) Let the angles at the vertices A, B, C in $\triangle ABC$ be α, β, γ respectively. Suppose each angle in $\triangle ABC$ is an acute angle.
 - i. Prove that $\cos^2(\alpha) + \cos^2(\beta) + \cos^2(\gamma) = 1 2\cos(\alpha)\cos(\beta)\cos(\gamma)$. **Remark.** At some stage you may need express $\cos^2(\mu) + \cos^2(\nu)$ in terms of $\cos(2\mu), \cos(2\nu)$.
 - ii. Prove that $\cos^2(\alpha)\cos^2(\beta)\cos^2(\gamma) < \frac{1}{27}$.

14. Here we are going to re-prove the Arithmetico-geometrical Inequality.

(a) Let a, b be real numbers. Suppose $a \le 1 \le b$.

Prove that $a + b \ge ab + 1$. Also prove that equality holds iff (a = 1 or b = 1).

- (b)[♣] Apply mathematical induction to verify the statement below:
 - (†) Let n be an integer greater than 1. Suppose c_1, c_2, \dots, c_n are positive real numbers. Further suppose $c_1c_2 \dots c_n = 1$. Then $c_1 + c_2 + \dots + c_n \ge n$. Equality holds iff $c_1 = c_2 = \dots = c_n$.

Remark. At some stage of the 'inductive argument', you may need the result in part (a).

- $(c)^{\diamond}$ By applying the result in the previous part, or otherwise, show that the statement below is true:
 - (‡) Let n be an integer greater than 1. Suppose a_1, a_2, \dots, a_n are positive real numbers. Then $(a_1 a_2 \dots a_n)^{\frac{1}{n}} \leq \frac{a_1 + a_2 + \dots + a_n}{n}$. Equality holds iff $a_1 = a_2 = \dots = a_n$.
- 15. Here we are going to re-prove the Arithmetico-geometrical Inequality.
 - (a) Let n be an integer greater than 1. Let a, b be non-negative real numbers. Prove that $(a + b)^n \ge a^n + na^{n-1}b$. Also prove that equality holds iff b = 0.
 - (b) Let $\{x_n\}_{n=1}^{\infty}$ be an increasing infinite sequence of positive real numbers.

For each positive integer n, define $A_n = \frac{x_1 + x_2 + \dots + x_n}{n}$, $G_n = (x_1 x_2 \cdot \dots \cdot x_n)^{\frac{1}{n}}$.

- i. Let m be a positive integer.
 - A.^{\diamond} Prove that $A_{m+1} \ge A_m$.
 - B. Express x_{m+1} in the form $P_m A_{m+1} Q_m A_m$ for some appropriate positive integers P_m, Q_m (whose values depend on m).
 - C.* Prove that $A_{m+1}^{m+1} \ge A_m^m x_{m+1}$. (Hint: Start by re-expressing A_{m+1} as $A_m + (A_{m+1} A_m)$, and apply the result in part (a).)

1

- ii. Hence, or otherwise, prove that the statement below is true:
 - Let n be a positive integer. $A_n \ge G_n$. Equality holds iff $x_1 = x_2 = \cdots = x_n$.
- 16. (a) Verify the statements below:

i. Let
$$a, b \in \mathbb{R}$$
. Suppose $0 \le a < b$. Then $\frac{a}{1+a} \le \frac{b}{1+b}$.

ii. Let $a, b \in \mathbb{R}$. Suppose a, b are non-negative. Then $\frac{a+b}{1+a+b} \le \frac{a}{1+a} + \frac{b}{1+b}$.

- (b) Applying mathematical induction, or otherwise, prove the statement below:
 - Let $n \in \mathbb{N} \setminus \{0\}$. Suppose x_1, x_2, \dots, x_n are non-negative real numbers. Then

$$\frac{x_1 + x_2 + \dots + x_n}{1 + x_1 + x_2 + \dots + x_n} \le \sum_{j=1}^n \frac{x_j}{1 + x_j}$$

- (c) Hence, or otherwise, prove the statement below:
 - Let $n \in \mathbb{N} \setminus \{0\}$. Suppose c_1, c_2, \dots, c_n are non-negative real numbers. Then

$$\frac{c_1 c_2 \cdots c_n}{1 + c_1 c_2 \cdots c_n} \le \frac{c_1^n + c_2^n + \cdots + c_n^n}{n + c_1^n + c_2^n + \cdots + c_n^n} \le \sum_{j=1}^n \frac{c_j^n}{n + c_j^n}$$

17. (a) Let n, k be positive integers. Suppose $k \le n$. Verify that $\frac{1}{n^k} \binom{n}{k} \ge \frac{1}{k!}$.

- (b) Applying the Arithmetico-Geometrical Inequality together with the Binomial Theorem, or otherwise, prove the statement below:
- Let a_1, a_2, \dots, a_n be positive real numbers. Suppose $s = \sum_{j=1}^n a_n$. Then $\prod_{k=1}^n (1+a_k) \le \sum_{r=0}^n \frac{s^r}{r!}$. (c) Let $x \in \mathbb{R}$. Suppose 0 < x < 1. For any $n \in \mathbb{N} \setminus \{0\}$, define $b_n = \prod_{i=1}^n (1+x^k)$.

- i. Prove that $\{b_n\}_{n=1}^{\infty}$ is strictly increasing.
- ii. Take for granted that $\sum_{r=0}^{n} \frac{p^{r}}{r!} \leq e^{p}$ for any p > 0 for any $n \in \mathbb{N}$. Prove that $\{b_{n}\}_{n=1}^{\infty}$ is bounded above by $e^{x/(1-x)}$.
- The chart $(o_n)_{n=1}$ is solution above
- 18. Let p be a positive integer.
 - (a) Let x be a real number. Suppose $0 \le x \le 1$.
 - i. Prove that $1 + x^p \ge x^k + x^{p-k}$ for each $k = 0, 1, 2, \dots, p$.
 - ii.^{\diamond} Hence, or otherwise, deduce that $(1+x)^p \leq 2^{p-1}(1+x^p)$.

(b) Let u, v be positive real numbers. Prove that $\left(\frac{u+v}{2}\right)^p \leq \frac{u^p+v^p}{2}$.

- (c) \diamond Apply mathematical induction to justify the statement (\uparrow) below:
 - (\uparrow) Let n be a non-negative integer. Suppose a_1, a_2, \dots, a_{2^n} are positive real numbers. Then

$$\left(\frac{a_1 + a_2 + \dots + a_{2^n}}{2^n}\right)^p \le \frac{a_1^p + a_2^p + \dots + a_{2^n}^p}{2^n}.$$

(d)^{\clubsuit} Hence, or otherwise, prove that the statement (\Uparrow) below is true:

 (\uparrow) Let n be a positive integer. Suppose a_1, a_2, \dots, a_n be positive real numbers. Then

$$\left(\frac{a_1 + a_2 + \dots + a_n}{n}\right)^p \le \frac{a_1^p + a_2^p + \dots + a_n^p}{n}$$

Remark. Suppose p is a positive integer and a_1, a_2, \dots, a_n are n positive real numbers. Then the number $\sqrt[p]{\frac{a_1^p + a_2^p + \dots + a_n^p}{n}}$ is called the **mean power of** a_1, a_2, \dots, a_n of order p. (When p = 1, this number is the arithmetic mean of a_1, a_2, \dots, a_n ; when p = 2, this number is more often called the root-square-mean of a_1, a_2, \dots, a_n .) What has proved here is that the mean power of a collection of finitely many positive real numbers of order p is greater than or equal to the arithmetic mean of the same collection of numbers.

- 19. (a) Let x, y be positive real numbers. Prove that $\sqrt{(1+x)(1+y)} \ge 1 + \sqrt{xy}$.
 - (b) \diamond Apply mathematical induction to justify the statement (\uparrow) below:
 - (\uparrow) Let $n \in \mathbb{N}$. Suppose a_1, a_2, \dots, a_{2^n} are positive real numbers. Then

$$\sqrt[2^n]{(1+a_1)(1+a_2)\cdot\ldots\cdot(1+a_{2^n})} \ge 1 + \sqrt[2^n]{a_1a_2\cdot\ldots\cdot a_{2^n}}$$

(c)^{\clubsuit} Hence, or otherwise, prove that the statement (\uparrow) below is true:

(\uparrow) Let $n \in \mathbb{N} \setminus \{0, 1\}$. Suppose a_1, a_2, \dots, a_n are positive real numbers. Then

$$\sqrt[n]{(1+a_1)(1+a_2)\cdot\ldots\cdot(1+a_n)} \ge 1 + \sqrt[n]{a_1a_2\cdot\ldots\cdot a_n}$$

- (d) Hence, or otherwise, deduce the statement (\sharp) :
 - (#) Let $n \in \mathbb{N} \setminus \{0, 1\}$. Suppose $u_1, u_2, \dots, u_n, v_1, v_2, \dots, v_n$ are positive real numbers. Then

$$\sqrt[n]{(u_1+v_1)(u_2+v_2)\cdot\ldots\cdot(u_n+v_n)} \ge \sqrt[n]{u_1u_2\cdot\ldots\cdot u_n} + \sqrt[n]{v_1v_2\cdot\ldots\cdot v_n}$$

20.^{\diamond} Let α be a positive real number. For each $n \geq 2$, define

$$a_n = \left(1 + \frac{\alpha}{n}\right)^n, \qquad b_n = \sum_{k=0}^n \frac{\alpha^k}{k!}, \qquad c_n = \left(1 - \frac{\alpha^2}{2n}\right) \sum_{k=0}^n \frac{\alpha^k}{k!}.$$

(a) Show that $\{b_n\}_{n=2}^{\infty}$ is strictly increasing.

(b) i. By applying the Binomial Theorem, or otherwise, show that

$$a_n = R + S\alpha + \sum_{k=2}^n \frac{T\alpha^k}{k!} \cdot T \cdot \left(T - \frac{1}{n}\right) \left(T - \frac{2}{n}\right) \cdot \dots \cdot \left(T - \frac{k-1}{n}\right)$$

whenever $n \ge 2$. Here R, S, T are positive integers which are independent of n. You have to determine the respective values of R, S, T explicitly.

- ii. Deduce that $a_n < b_n$ whenever $n \ge 2$.
- iii. Show that $b_n \leq b_{N-1} + \frac{\alpha^N}{(1 \alpha/N) \cdot (N!)}$ whenever $n \geq 2$ and $N > \alpha$.

iv. Also show that $c_n < a_n$ whenever $n \ge \frac{\alpha^2}{2}$.

- (c) Show that $\{a_n\}_{n=2}^{\infty}$ is strictly increasing.
- 21.^{\heartsuit} Let S be a subset of \mathbb{R} and $\sigma \in \mathbb{R}$. Suppose σ is an upper bound of S in \mathbb{R} . Prove that the two statements below are logically equivalent:
 - (†) For any $\beta \in \mathbb{R}$, if β is an upper bound of S in \mathbb{R} then $\sigma \leq \beta$.
 - (‡) For any positive real number ε , there exists some $x \in S$ such that $\sigma \varepsilon < x$.

Remark. We introduce/recall the definition for the notion of least upper bound of a set here:

Let S be a subset of \mathbb{R} and $\sigma \in \mathbb{R}$. σ is said to be a least upper bound of S in \mathbb{R} if both of the statements (LU1), (LU2) are true:

(LU1) σ is an upper bound of S in \mathbb{R} .

(LU2) For any $\beta \in \mathbb{R}$, if β is an upper bound of S in \mathbb{R} then $\sigma \leq \beta$.

We also introduce/recall the Least-upper-bound Axiom for the real number system:

Let S be a subset of \mathbb{R} . Suppose S is non-empty and is bounded above in \mathbb{R} . Then S has a least upper bound.

What we have established in this question is an equivalent formulation for the definition for 'least upper bound of a set': we may replace (LU2) by:

(LU2') For any positive real number ε , there exists some $x \in S$ such that $\sigma - \varepsilon < x$.

22. (a) Let $\alpha \in \mathbb{R}$, and $A = \{x \mid x < \alpha\}$. Verify the statements below:

- i. For any $x \in A$, $y \in \mathbb{R}$, if y < x then $y \in A$.
- ii. $A \neq \emptyset$.
- iii. $A \neq \mathbb{R}$.
- iv. For any $x \in A$, there exists $x' \in A$ such that x < x'.

(b)^{\heartsuit} Let A be a subset of \mathbb{R} . Suppose Conditions (C1), (C2), (C3), (C4) are all satisfied:

- (C1) For any $x \in A$, $y \in \mathbb{R}$, if y < x then $y \in A$.
- (C2) $A \neq \emptyset$.
- (C3) $A \neq \mathbb{R}$.
- (C4) For any $x \in A$, there exists $x' \in A$ such that x < x'.

Prove that there exists some $\alpha \in \mathbb{R}$ such that $A = \{x \mid x < \alpha\}$. (You will need the Least-upper-bound Axiom at some stage in your argument.)

Remark. What we have just proved is a characterization of half-open intervals.

- 23. (a) Prove the statements below:
 - i. Let $\alpha, \beta \in \mathbb{Q}$. Suppose $\alpha < \beta$. Then there exists some $r \in \mathbb{Q}$ such that $\alpha < r < \beta$.
 - ii. Let $\alpha, \beta \in \mathbb{Q}$. Suppose $\alpha < \beta$. Then there exists some $u \in \mathbb{R} \setminus \mathbb{Q}$ such that $\alpha < r < \beta$.

Remark. Don't think too hard.

(b)^{\heartsuit} Apply the Archimedean Principle and the Well-ordering Principle for Integers to prove the statement below: (\natural) Let $\alpha, \beta \in \mathbb{R}$. Suppose $\beta > \alpha > 0$. Then there exists some $r \in \mathbb{Q}$ such that $\alpha < r < \beta$. (*Hint.* Is it guaranteed that there is some positive integer, say, N for which the interval (α, β) will contain at least two distinct fractions with denominator N and with integral numerators? If there is indeed such an integer

N, is it true that $\frac{1}{N} < \beta - \alpha$?)

(c) Hence, or otherwise, prove the statements below:

- i.* Let $\alpha, \beta \in \mathbb{R}$. Suppose $\alpha < \beta$. Then there exists some $r \in \mathbb{Q}$ such that $\alpha < r < \beta$. Remark. It is an exercise on how to cleverly split an argument into various cases.
- ii. \diamond Let $\alpha, \beta \in \mathbb{R}$. Suppose $\alpha < \beta$. Then there exists some $r \in \mathbb{R} \setminus \mathbb{Q}$ such that $\alpha < u < \beta$.
- (d) Prove the statements below:
 - i. Suppose $x \in \mathbb{R}$. Then there exists some increasing infinite sequence of rational numbers $\{a_n\}_{n=1}^{\infty}$ such that $x \frac{1}{2n} < a_n < x$ for any $n \in \mathbb{N} \setminus \{0\}$. (*Hint.* First apply the Archimedean Principle to obtain some infinite sequence of rational numbers $\{c_n\}_{n=0}^{\infty}$

which satisfies $x - \frac{1}{2n} < c_n < x$ for any $n \in \mathbb{N} \setminus \{0\}$ but which is not necessarily increasing.)

ii.^{\diamond} Suppose $x \in \mathbb{R}$. Then there exists some decreasing infinite sequence of rational numbers $\{b_n\}_{n=1}^{\infty}$ such that $x < b_n < x + \frac{1}{2n}$ for any $n \in \mathbb{N} \setminus \{0\}$.

(*Hint.* Make clever use of the result in the previous part.)

- iii. Suppose $x \in \mathbb{R}$. Then there exist some infinite sequence of closed and bounded intervals $\{I_n\}_{n=1}^{\infty}$ such that Conditions (N1), (N2), (N3), (N4) are all satisfied:
 - (N1) $x \in I_n$ for any $x \in \mathbb{N} \setminus \{0\}$.
 - (N2) For any $n \in \mathbb{N} \setminus \{0\}$, the endpoints of I_n are rational numbers whose distance from each other is most $\frac{1}{n}$, and neither endpoints of I_n is x.
 - (N3) $I_{n+1} \subset I_n$ for any $n \in \mathbb{N} \setminus \{0\}$.
 - (N4) $\{u \in \mathbb{R} : u \in I_n \text{ for any } n \in \mathbb{N} \setminus \{0\}\} = \{x\}.$

(*Hint.* Apply the results in the two parts above.)