
MATH1050 Exercise 8
1. Consider each of the infinite sequences (of non-negative real numbers) below. Verify that it is strictly monotonic. Also

name an upper bound and a lower bound for each of them.

(a)
{
1

n

}∞

n=1

(b)
{

1

n2

}∞

n=1

(c)
{

n+ 1

n2+n+1

}∞

n=0

(d)
{

2

3n

}∞

n=0

(e)
{
5n

n!

}∞

n=5

(f)
{
(n!)2

(2n)!

}∞

n=0

(g)
{

n
√
2
}∞

n=2

(h)
{

n∑
k=0

1

3k

}∞

n=0

(i)♢
{

n∑
k=2

2

k2 − 1

}∞

n=2

(j)
{
n2

3n

}∞

n=2

2. Let r be a positive rational number. For any n ∈ N\{0}, define an =

n∑
k=1

1

k1+r
.

(a) Verify that {an}∞n=1 is strictly increasing.

(b) i. Prove that for any m ∈ N\{0}, a2m+1−1 − a2m−1 ≤ 1

2mr

ii.♢ Hence deduce that {an}∞n=1 is bounded above in R. (Hint. Apply the Telescopic Method.)

Remark. It follows from the Bounded-Monotone Theorem that, for each rational number σ greater than 1, the infinite

sequence
{

n∑
k=1

1

kσ

}∞

n=1

converges in R. In fact, for each real number x > 1, the infinite sequence
{

n∑
k=1

1

kx

}∞

n=1

converges

in R. The function defined by assigning each x ∈ (1,+∞) to the number lim
n→∞

n∑
k=1

1

kx
, and then ‘extended naturally to

all complex numbers with real part greater than 1’, is the known as the Riemann Zeta-Function.

3. Consider the subsets of R below.
• Determine whether it has any least element. If yes, name it as well. If it has no least element, determine whether

it has a lower bound in R.
• Determine whether it has any greatest element. If yes, name it as well. If it has no greatest element, determine

whether it has an upper bound in R.

There is no need to justify your answers. (Drawing appropriate pictures, on the real line or on the coordinate plane, may
help you find the answers.)
(a) [−1, 1) ∩ Q

(b) [−1, 1)\Q

(c)
{

1

n+ 1

∣∣∣∣n ∈ N.

}
(d)♢

{
1

n+1
+(−1)n

∣∣∣∣n∈N.

}

(e) (1,+∞) ∩ Q

(f) (1,+∞)\Q
(g) {x ∈ R : 2x+ 3 > 0.}
(h) {x ∈ R : x+ 2 ≥ x2.}
(i) {x ∈ R : x < x−1.}
(j) {x ∈ R : x2−2x−3<0.}

(k)♢
{

1

2m
+

1

3n

∣∣∣∣m,n ∈ N.

}
(l)♣

{
1

2m
− 1

3n

∣∣∣∣m,n ∈ N.

}

4. (a) Let I = [0, 9). (By definition, I = {x ∈ R : 0 ≤ x < 9}.)
i. Prove that I has a least element, namely, 0. ii.♢ Prove that I has no greatest element.

(b) Let J = [0, 9) ∩ Q.
i. Prove that J has a least element, namely, 0. ii.♢ Prove that J has no greatest element.

(c) Let K = [0, 9)\Q.
i.♢ Prove that K has no greatest element. ii.♣ Prove that K has no least element.

5. Let S =

{
x ∈

(
0,

1

8

)
: x =

b

3a
for some a, b ∈ N

}
, and T =

{
y ∈ R : y =

n∑
k=1

1

9k
for some n ∈ N\{0}

}
.

(a) Verify that T ⊂ S.
(b) Does T have a least element? Justify your answer.
(c) Prove that S ⊂/ T .

Remark. The result you obtain in part (b) may be useful.
(d)♢ Prove the statement below:

• For any u, v ∈ S, if u < v then there exists some w ∈ S such that u < w < v.
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6. Here we are going to re-prove of the ‘inequality part’ of Cauchy-Schwarz Inequality, with the help of mathematical
induction and the Triangle Inequality for the reals.

(a) Consider the statement (S):
Let n ∈ N\{0, 1}. Suppose a1, a2, · · · , an, b1, b2, · · · , bn are non-negative real numbers.

Then

 n∑
j=1

aj
2

 n∑
j=1

bj
2

 ≥

 n∑
j=1

ajbj

2

.

Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate passages so
that it gives an argument for the statement (S) by mathematical induction.

Denote by P (n) the proposition below:

(I)

• Suppose s, t, u, v are non-negative real numbers.

We have (s2 + t2)(u2 + v2)− (su+ tv)2 = (II) ≥ 0.

Then (III) ≥ (IV) .

Hence P (2) is true.

• Let m ∈ N\{0, 1}. Suppose P (m) is true. We verify that P (m+ 1) is true below:

Suppose (V) .

Define A =

√√√√ m∑
j=1

aj2, B =

√√√√ m∑
j=1

bj
2, C = (VI) .

Note that A,B,C are non-negative real numbers.

By P (2), we have

m+1∑
j=1

aj
2

m+1∑
j=1

bj
2

 = (VII) ≥ (AB + am+1bm+1)
2.

By P (m), we have AB ≥ C2. Then AB+ (VIII) ≥ (IX) +am+1bm+1 =

m+1∑
j=1

ajbj ≥ 0.

Therefore

m+1∑
j=1

aj
2

m+1∑
j=1

bj
2

 ≥ (AB + am+1bm+1)
2 ≥

m+1∑
j=1

ajbj

2

.

Hence P (m+ 1) is true.

By the Principle of Mathematical Induction, P (n) is true for any n ∈ N\{0, 1}.

(b) By applying the result above together with the Triangle Inequality for the reals, or otherwise, prove the statement
below:

Let n ∈ N\{0, 1}. Suppose a1, a2, · · · , an, b1, b2, · · · , bn are real numbers.

Then

 n∑
j=1

aj
2

 n∑
j=1

bj
2

 ≥

 n∑
j=1

ajbj

2

.

7. The various parts in this question are concerned with applications of the Cauchy-Schwarz Inequality. They are independent
of each other.

(a) Suppose x, y, z are real numbers. Prove that yz + zx+ xy ≤ (y + z − x)2 + (z + x− y)2 + (x+ y − z)2.

(b) Let a > 0. Prove that an

1 + a+ a2 + · · ·+ a2n
≤ 1

2n+ 1
.

(c) Let n be a positive integer. Prove that
n∑

k=0

√(
n
k

)
≤

√
2n(n+ 1).

8. (a) Let a1, a2, · · · , an be positive real numbers. Prove that 1

n

n∑
k=1

ak ≤

√√√√ 1

n

n∑
k=1

ak2.

(b)♢ Let b1, b2, · · · , bn be positive real numbers. Suppose
n∑

k=1

bk = S. Prove that
n∑

k=1

√
bk ≤

√
nS.
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(c)♢ Let c1, c2, · · · , cn be positive real numbers. Suppose
n∑

k=1

ck = 1 +
1

2n
.

By applying the previous part, or otherwise, prove that
n∑

k=1

√
2ck + 1 ≤ n+ 1.

9.♣ In this question you may need this version of Bernoulli’s Inequality:

• Let m ∈ (1,+∞) ∩ Q and β ∈ (−1,+∞). The inequality (1 + β)m ≥ 1 +mβ holds. Equality holds iff β = 0.

Let p ∈ (1,+∞) ∩ Q. Define q =

(
1− 1

p

)−1

. (Note that q ∈ (1,+∞) ∩ Q and 1

p
+

1

q
= 1.)

Prove the results below:

(a) Let u, v be positive real numbers. The inequality uv ≤ up

p
+

vq

q
holds.

(b) Let a, b, c, d be positive real numbers. The inequality ac+ bd ≤ (ap + bp)
1
p (cq + dq)

1
q holds.

(c) Let w, x, y, z be positive real numbers. The inequality [(w + y)p + (x+ z)p]
1
p ≤ (wp + xp)

1
p + (yp + zp)

1
p holds.

Remark. Apply Bernoulli’s Inequality in part (a). In part (b), apply the result of part (a). In part (c), apply the result
of part (b). The results in part (b), part (c) are ‘baby versions’ of Hölder’s Inequality, Minkowski’s Inequality
respectively.

10. The various parts in this question are concerned with applications of the Arithmetico-geometrical Inequality. They are
independent of each other.

(a) Suppose w, x, y, z are real numbers. Prove that w4 + x2y2 + y2z2 + z2x2

4
≥ wxyz.

(b) Let a, b, c be positive real numbers. Suppose a+ b+ c = 1. Prove that
(
1

a
− 1

)(
1

b
− 1

)(
1

c
− 1

)
≥ 8.

(c) Let n be a positive integer.
i. Prove that nn ≥ 1 · 3 · 5 · ... · (2n− 3) · (2n− 1).
ii. Hence deduce that (n2 + n)n ≥ (2n)!.

11. Here we are going to re-prove the Arithmetico-geometrical Inequality.

(a) Let n be a positive integer, and t be a positive real number. Prove that tn − 1 ≥ n(t− 1).
(b)♣ Let x1, x2, · · · , xk, xk+1 be positive real numbers. Define Gk = k

√
x1x2 · ... · xk, Gk+1 = k+1

√
x1x2 · ... · xkxk+1.

Prove that xk+1 ≥ (k + 1)Gk+1 − kGk.
(c) Suppose {an}∞n=1 is an infinite sequence of positive real numbers.

i.♣ By applying the result in the previous part, or otherwise, prove that for each integer m ≥ 2,

a1 + a2 + · · ·+ am−1 + am
m

− (a1a2 · ... · am−1am)
1
m ≥ m− 1

m

[
a1 + a2 + · · ·+ am−1

m− 1
− (a1a2 · ... · am−1)

1
m−1

]
.

ii.♢ Hence deduce that a1 + a2 + · · ·+ am−1 + am
m

≥ (a1a2 · ... · am−1am)
1
m for each integer m ≥ 2.

12. (a) Let x, y ∈ (0, 0.5]. Prove that xy

(x+ y)2
≤ (1− x)(1− y)

[(1− x) + (1− y)]2
.

(b)♢ Apply mathematical induction to justify the statement (↑) below:
(↑) Let n ∈ N. Suppose a1, a2, · · · , a2n ∈ (0, 0.5]. Then

a1a2 · ... · a2n
(a1 + a2 + · · ·+ a2n)2

n ≤ (1− a1)(1− a2) · ... · (1− a2n)

[(1− a1) + (1− a2) + · · ·+ (1− a2n)]2
n

.
(c)♣ Hence, or otherwise, prove that the statement (⇑) below is true:

(⇑) Let n ∈ N\{0, 1}. Suppose a1, a2, · · · , an ∈ (0, 0.5]. Then

a1a2 · ... · an
(a1 + a2 + · · ·+ an)n

≤ (1− a1)(1− a2) · ... · (1− an)

[(1− a1) + (1− a2) + · · ·+ (1− an)]n

Remark. Equality holds iff a1 = a2 = · · · = an. (Prove it as well.) The result (together with the ‘equality
condition’) that we have proved is known as the Ky Fan Inequality.

13. (a) Applying the Arithmetico-geometrical Inequality, or otherwise, prove the statement (†) below:
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(†) Suppose a, b be distinct positive real numbers. Then, for each n ∈ N, the inequality n+1
√
abn <

a+ nb

n+ 1
holds.

(b) For any n ∈ N\{0, 1, 2}, define pn =

(
1 +

1

n

)n

, qn =

(
1− 1

n

)n

, rn =

(
1 +

1

n

)n+1

i. Applying the statement (†), or otherwise, prove that {pn}∞n=2, {qn}∞n=2 are strictly increasing.
ii. Hence, or otherwise, prove that {rn}∞n=2 is strictly decreasing.

(Hint. Can you relate rn with one of qn−1, qn, qn+1? And which of them?)
iii. Hence, or otherwise, deduce that {pn}∞n=2 is bounded above in R and {rn}∞n=2 is bounded below in R.

(c) Now, according to the Bounded-Monotone Theorem, the infinite sequence {pn}∞n=2 converges to some limit in R,
which we denote by e. Moreover, (after some work), we can deduce that the statement (‡) holds:

(‡)
(
1 +

1

n

)n

< e <

(
1 +

1

m

)m+1

for any m,n ∈ N\{0, 1}.

Applying the statement (‡), or otherwise, prove that
(n
e

)n

< n! < e

(
n+ 1

e

)n+1

for each n ∈ N\{0, 1}.

14. (a) Consider the statements (♯), (♭):
(♯) The set N is not bounded above in R.
(♭) Let A be a non-empty subset of R. Suppose A is bounded above in R. Then the set of all upper bounds of A

in R has a least element.
The validity of the statement (♭), which is the Least-upper-bound Axiom, is taken for granted.
By an appropriate re-ordering of the blocks of sentences in the box below, labelled by bold-typed Latin alphabets
A, B, ..., J respectively, give a proof for the statement (♯), with the help of the statement (♭).

A. Note that 0 ∈ N. Then N ̸= ∅.

B. Contradiction arises. Hence N is not bounded above in R in the first place.

C. Write ε0 =
1

2
. We have σ − ε0 < σ. By definition of least element, σ − ε0 /∈ B.

D. Then, by (♭), B would have a least element. We denote this number by σ.

E. Hence σ ∈ B and σ /∈ B simultaneously.

F. Then, because n0+1 > σ and n0+1 ∈ N, σ would not be an upper bound of N in R. Therefore σ /∈ B.

G. Suppose it were true that N was bounded above in R.
Define B = {τ ∈ R : τ is an upper bound of N in R}.

H. Therefore there would exist some n0 ∈ N such that n0 > σ − ε0. Since n0 ∈ N, we have n0 + 1 ∈ N.

I. Note that n0 + 1 > σ − ε0 + 1 = σ +
1

2
> σ.

J. By the definition of B, the number σ − ε0 is not an upper bound of N.

(b) Apply the statement (♯) to deduce the statement below, known as the Archimedean Principle for the reals:
(AP) For any ε > 0, there exists some N ∈ N\{0} such that Nε > 1.

Remark. The Archimedean Principle can be (trivially) re-formulated as:

(AP’) For any ε > 0, there exists some N ∈ N\{0} such that 1

N
< ε.

It is in fact logically equivalent to the statement (♯) given in the previous part. In various textbooks in mathematical
analysis, the name ‘Archimedean Principle’ may refer to any one of these three logically equivalent statements.

(c)♣ Apply the Archimedean Principle and the Well-ordering Principle for integers to prove the statement below:
• Suppose x, u ∈ (0,+∞). Then there exist some unique q ∈ N, r ∈ [0, u) such that x = qu+ r.

(Hint. Consider the set {k ∈ N : ku > x}. Is it true that it has a least element? Can it be justified with the
Well-ordering Principle for integers? But is this set non-empty in the first place? Can it be justified with the
Archimedean Principle. If this set has a least element, say, ν, what can be said of the number ν − 1? Is the latter
a natural number? Now what about the number x− (ν − 1)u? Is it true that x− (ν − 1)u is non-negative and less
than u?)
Remark. Can you provide a geometric interpretation for this result when you are given a pair of line segments
of length x, u respectively?
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