- 1. (a) There exists some $\varepsilon \in (0, +\infty)$ such that for any $\delta \in (0, +\infty)$, there exists some $x \in \mathbb{R}$ such that $0 < |x a| < \delta$ and $|f(x) - \ell| \ge \varepsilon$.
 - (b) For any $\ell \in \mathbb{R}$, there exists some $\varepsilon \in (0, +\infty)$ such that for any $\delta \in (0, +\infty)$, there exists some $x \in \mathbb{R}$ such that $0 < |x a| < \delta$ and $|f(x) \ell| \ge \varepsilon$.
 - (c) There exists some $a \in \mathbb{R}$ such that for any $\ell \in \mathbb{R}$, there exists some $\varepsilon \in (0, +\infty)$ such that for any $\delta \in (0, +\infty)$ there exists some $x \in \mathbb{R}$ such that $0 < |x a| < \delta$ and $|f(x) \ell| \ge \varepsilon$.
 - (d) There exists some $a \in \mathbb{R}$, $\varepsilon \in (0, +\infty)$ such that for any $\delta \in (0, +\infty)$, there exists some $x \in \mathbb{R}$ such that $|x a| < \delta$ and $|f(x) f(a)| \ge \varepsilon$.
 - (e) There exists some $\varepsilon \in (0, +\infty)$ such that for any $\delta \in (0, +\infty)$ there exists some $x, a \in \mathbb{R}$ such that $|x a| < \delta$ and $|f(x) f(a)| \ge \varepsilon$.
 - (f) There exists some $\varepsilon \in (0, +\infty)$ such that for any $\delta \in (0, +\infty)$, there exist some $x, a \in \mathbb{R}$ such that $|x a| < \delta$ and $|f(x) f(a)| \ge \varepsilon$.

Remark. The given statement to be negated is:

'For any $a \in \mathbb{R}$, for any $\varepsilon \in (0, +\infty)$, there exists some $\delta \in (0, +\infty)$ independent of the choice of a such that for any $x \in \mathbb{R}$, if $|x - a| < \delta$ then $|f(x) - f(a)| < \varepsilon$.'

In light of the presence of the words 'independent of the choice of a' appending 'there exists some δ ', the given statement should be understood as:

'For any $\varepsilon \in (0, +\infty)$, there exists some $\delta \in (0, +\infty)$ such that for any $a \in \mathbb{R}$, for any $x \in \mathbb{R}$, if $|x - a| < \delta$ then $|f(x) - f(a)| < \varepsilon$.'

2. (a) (b)	False. True.	(c) (d)	True. True.	(e) (f)	False. False.	(g) False.(h) False.	(i) False.(j) False.	(k)	True.
3 4 5. (a) (b) (c)							B. 4.		
6. —— 7. —— 8.	-								
 9. (a) (b) (c) (d) (e) (f) (g) (h) 	True. True. False. True. False. True. False. False.				(i) (j) (k) (l) (m)	True. True. True. <i>Hint.</i> Start with number, say, 5. rational or irrat rational, how at False. False.	a concrete prin Ask: Is $(\sqrt{5})$ bional? If it is bout $[(\sqrt{5})^{\sqrt{5}}]^{\sqrt{5}}$	ne $\sqrt{5}$ ir- $\overline{5}$?	 (n) False. (o) False. (p) False. (q) False. (r) True. (s) False. (t) True.

10. *Hint*.

Note that $|a| + |b| \in S$. (Why?) Hence $S \neq \emptyset$. By the Well-ordering Principle for Integers, S has a least element. Denote it by d. Now verify that $d = \gcd(a, b)$. Note that by definition, $d \in I$.

11. —

12. —

13. (a) — (b) — (c) *Hint*. Apply the result in part (b). (d) — (e) *Hint*. Apply the result in part (d). (f) — 14. (a) *Hint*. Apply mathematical induction to the proposition P(n) below: For any $m \in [2, n]$, n is a prime number or a product of at least two prime numbers. (b) Hint. Apply mathematical induction to the proposition P(n) below: For any $m \in [[2, n]]$, if $p_1, p_2, \dots, p_s, q_1, q_2, \dots, q_t$ are prime numbers, $0 < p_1 \le p_2 \le \dots \le p_s, 0 < q_1 \le q_2 \le \dots \le p_s$ $\dots \leq q_t, m = p_1 p_2 \dots p_s$ and $m = q_1 q_2 \dots q_t$ then s = t and $p_1 = q_1, p_2 = q_2, \dots p_s = q_s$. 15. — 16. — 17. (a) — (b) i. True. ii. False. iii. False. 18. (a) True. (c) False. (d) True. (b) False. (e) False. (f) True. (g) False. (h) False. ii. False. 19. (a) i. True. (b) -20. — 21. — 22. — 23. -24. (a) *Hint*. Apply the Triangle Inequality for complex numbers. (b) — (c) — (d) — (e) i. ii. A. ∅. B. **€**. C. $\{\zeta \in \mathbb{C} : |\zeta| < 1\}.$ D. Ø. E. $\{\zeta \in \mathbb{C} : \operatorname{Re}(\zeta) > 0\}.$ F. $\{\zeta \in \mathbb{C} : |\operatorname{\mathsf{Re}}(\zeta)| + |\operatorname{\mathsf{Im}}(\zeta)| < 1\}.$