- 1. (a) There exists some $\varepsilon \in (0, +\infty)$ such that for any $\delta \in (0, +\infty)$, there exists some $x \in \mathbb{R}$ such that $0 < |x a| < \delta$ and $|f(x) - \ell| \geq \varepsilon$.
	- (b) For any $\ell \in \mathbb{R}$, there exists some $\varepsilon \in (0, +\infty)$ such that for any $\delta \in (0, +\infty)$, there exists some $x \in \mathbb{R}$ such that $0 < |x - a| < \delta$ and $|f(x) - \ell| \geq \varepsilon$.
	- (c) There exists some $a \in \mathbb{R}$ such that for any $\ell \in \mathbb{R}$, there exists some $\varepsilon \in (0, +\infty)$ such that for any $\delta \in (0, +\infty)$ there exists some $x \in \mathbb{R}$ such that $0 < |x - a| < \delta$ and $|f(x) - \ell| \geq \varepsilon$.
	- (d) There exist some $a \in \mathbb{R}$, $\varepsilon \in (0, +\infty)$ such that for any $\delta \in (0, +\infty)$, there exists some $x \in \mathbb{R}$ such that $|x a| < \delta$ and $|f(x) - f(a)| \geq \varepsilon$.
	- (e) There exists some $\varepsilon \in (0, +\infty)$ such that for any $\delta \in (0, +\infty)$ there exists some $x, a \in \mathbb{R}$ such that $|x a| < \delta$ and $|f(x) - f(a)| \geq \varepsilon$.
	- (f) There exists some $\varepsilon \in (0, +\infty)$ such that for any $\delta \in (0, +\infty)$, there exist some $x, a \in \mathbb{R}$ such that $|x a| < \delta$ and $|f(x) - f(a)| \geq \varepsilon$.

Remark. The given statement to be negated is:

'*For any* $a \in \mathbb{R}$ *, for any* $\varepsilon \in (0, +\infty)$ *, there exists some* $\delta \in (0, +\infty)$ *independent of the choice of a such that for any* $x \in \mathbb{R}$, *if* $|x - a| < \delta$ *then* $|f(x) - f(a)| < \varepsilon$.

In light of the presence of the words '*independent of the choice of a*' appending 'there exists some δ ', the given statement should be understood as:

'For any $\varepsilon \in (0, +\infty)$, there exists some $\delta \in (0, +\infty)$ such that for any $a \in \mathbb{R}$, for any $x \in \mathbb{R}$, if $|x - a| < \delta$ *then* $|f(x) - f(a)| < \varepsilon$.

10. *Hint.*

Note that $|a| + |b| \in S$. (Why?) Hence $S \neq \emptyset$. By the Well-ordering Principle for Integers, *S* has a least element. Denote it by *d*. Now verify that $d = \gcd(a, b)$. Note that by definition, $d \in I$.

 $11. -$

 $12. -$

13. (a) $\frac{ }{ }$ (b) — (c) *Hint.* Apply the result in part (b). (d) — (e) *Hint.* Apply the result in part (d). (f) — 14. (a) *Hint.* Apply mathematical induction to the proposition $P(n)$ below: *For any* $m \in [2, n]$, *n is a prime number or a product of at least two prime numbers.* (b) *Hint.* Apply mathematical induction to the proposition $P(n)$ below: For any $m \in [2, n]$, if $p_1, p_2, \dots, p_s, q_1, q_2, \dots, q_t$ are prime numbers, $0 < p_1 \leq p_2 \leq \dots \leq p_s, 0 < q_1 \leq q_2 \leq \dots$ $\cdots \leq q_t$, $m = p_1 p_2 \cdot \ldots \cdot p_s$ and $m = q_1 q_2 \cdot \ldots \cdot q_t$ then $s = t$ and $p_1 = q_1, p_2 = q_2, \ldots p_s = q_s$. $15. -$ 16. $\frac{1}{10}$ 17. (a) — (b) i. True. ii. False. iii. False. 18. (a) True. (b) False. (c) False. (d) True. (e) False. (f) True. (g) False. (h) False. 19. (a) i. True. ii. False. (b) — $20. 21.$ — $22. 23. -$ 24. (a) *Hint.* Apply the Triangle Inequality for complex numbers. (b) — (c) — (d) — (e) i. ii. A. *∅*. B. C. C. $\{\zeta \in \mathbb{C} : |\zeta| < 1\}.$ D. *∅*. E. $\{\zeta \in \mathbb{C} : \text{Re}(\zeta) > 0\}.$ $F. \ \{\zeta \in \mathbb{C} : |Re(\zeta)| + |Im(\zeta)| < 1\}.$