- 1. (a) Let P, Q be statements. Verify that the statement $[(P \rightarrow Q) \land P] \rightarrow Q$ is a tautology by drawing an appropriate truth table.
	- (b) Let *P*, *Q* be statements. Consider the statement $[(P \rightarrow Q) \land Q] \rightarrow P$. Determine whether it is a tautology, or a contradiction, or a contingent statement. Justify your answer by drawing an appropriate truth table.
- 2. Let *P, Q* be statements. By drawing one or more appropriate truth tables, verify that the statements

 $P \leftrightarrow (\sim Q), \quad (\sim P) \leftrightarrow Q, \quad (P \vee Q) \wedge [\sim (P \wedge Q)], \quad [P \wedge (\sim Q)] \vee [(\sim P) \wedge Q]$

are logically equivalent to each other.

Remark. $(P \vee Q) \wedge [\sim (P \wedge Q)]$ is called the **exclusive disjunction** of *P, Q*. We may denote it by *P* $\vee Q$. It is true exactly when one and only one of *P, Q* is true. In words we write '*P* xor *Q*', or as 'either *P* or *Q*'. It is the kind of 'or' that you find in 'coffee or tea' in a restaurant menu.

- 3. Let *P, Q, R* be statements. Consider each of the pairs of statements below. Determine whether the statements are logically equivalent. Justify your answer by drawing an appropriate truth table.
	- (a) $P \rightarrow (Q \land R), (P \rightarrow Q) \land (P \rightarrow R).$
	- (b) $P \rightarrow (Q \rightarrow R)$, $(P \land Q) \rightarrow R$.
	- $(P \rightarrow Q) \vee (P \rightarrow Q) \vee (P \rightarrow R)$.
	- (d) $(P \lor Q) \rightarrow R$, $(P \rightarrow R) \land (Q \rightarrow R)$.
	- $(P \rightarrow Q) \rightarrow R$, $P \rightarrow (Q \rightarrow R)$.
	- (f) $P \rightarrow (Q \lor R), [P \land (\sim Q)] \rightarrow R$.
- 4. Let *P, Q, R* be statements. Consider each of the statements below. Determine whether it is a tautology or a contradiction or a contingent statement . Justify your answer by drawing an appropriate truth table.
	- $(P \rightarrow (P \rightarrow Q)) \rightarrow (P \rightarrow Q)$ (b) $(P \rightarrow R) \rightarrow [(P \land Q) \rightarrow R)]$ (C) $[(P \rightarrow Q) \land (Q \rightarrow R)] \rightarrow (P \rightarrow R)$ (d) $[(P \rightarrow Q) \land (Q \rightarrow R) \land (R \rightarrow P)] \rightarrow (Q \rightarrow P)$ $(P \rightarrow R) \rightarrow [(P \rightarrow Q) \vee (Q \rightarrow R)]$ (f) $(P \rightarrow Q) \rightarrow [(Q \rightarrow R) \vee (P \wedge R)]$
- 5. *You are not required to justify your answer.*

Consider each of the sets below. List every element of the set concerned, each exactly once.

- (a) $A = \{0, 1, 2, 3\}.$
- (b) $B = \{0, 0, 1, 2, 3, 1, 4\}.$
- (c) *C* = *{*0*,* 1*,* 2*, {*0*}, {*1*}}*.
- (d) $D = \{0, 1, \{0, 1\}\}.$
- (e) *E* = *{*0*,* 1*, {*0*,* 1*}, {{*0*,* 1*}}}*.
- 6. *You are not required to justify your answer.*

Let $A = \{0, 1, 2, 3\}, B = \{0, 0, 2, 1, 0\}, C = \{1, 3, 3, 1, 0, 3\}, D = \{0, 2, \{1\}\}, E = \{0, \{1\}, \{2, 3\}\}, F = \{0, \{2\}, \{3\}\},$ *G* = *{*0*, {*1*,* 2*}, {*3*}}*.

Consider each of the sets below. List every element of the set concerned, each element exactly once. Where the set concerned is the empty set, write '*this set is the empty set*'.

- (b) *B* $A \cup E$ (h) $D\backslash E$ (K) $G\backslash F$
- (c) *C* (f) *A* ∪ *G* (i) $E\setminus D$ (1) $\mathfrak{B}(D)$

7. *You are not required to justify your answer.*

Let $C = \{0, 1, 1, 2, 3, 3, 4\}, D = \{0, 1, \{1, 2, 3\}, \{\{3\}, 4\}\}.$

Consider each of the sets below. List every element of the set concerned, each element exactly once. Where the set concerned is the empty set, write '*this set is the empty set*'.

- (a) *C*. (c) *C ∩ D*. $(C \setminus D)$. (c) $C \triangle D$.
- (b) *D*. (d) $C \cup D$. (f) $D\setminus C$. (h) $\mathfrak{P}(C \cap D)$.

8. *You are not required to justify your answer.*

Let $A = \{\{3, 5, 3\}, 5, 7, 7\}$, $B = \{\{3, 5\}, \{5, 7\}\}$, $C = \{1, \{5\}\}.$

Consider each of the sets below. List every element of the set concerned, each element exactly once. Where the set concerned is the empty set, write '*this set is the empty set*'.

(a) $A \cap B$ (b) $B \cup C$ (c) $B \setminus A$ (d) $\mathfrak{P}(B)$

9. *You are not required to justify your answer.*

Let $B = \{\{b, e\}, \{e\}, \{t\}, \{h\}, \{o, v\}, \{e\}, \{n\}\}\$, $H = \{\{h\}, \{a, y, d\}, \{n\}\}\$, $M = \{\{m, o\}, \{z, a, r, t\}\}\$ $S = \{\{s, c\}, \{h\}, \{u\}, \{b, e\}, \{r\}, \{t\}\}.$

Consider each of the sets below. List every element of the set concerned, each element exactly once. Where the set concerned is the empty set, write '*this set is the empty set*'.

(a) $B \cap H$ (b) $B \cup H$ (c) $B \setminus S$ (d) $\mathfrak{P}(M)$

10. *You are not required to justify your answers in this question.*

Let $C = \{c, a, n, t, o, r\}$, $D = \{d, e, d, e, k, i, n, d\}$, $K = \{k, r, o, n, e, c, k, e, r\}$.

- (a) How many elements are there in the set $C \cup D$?
- (b) How many elements are there in the set *{C} ∪ {D}*?
- (c) How many elements are there in the set $\{C \cup D\}$?
- (d) List every element of the set $C\backslash K$, each element exactly once.
- (e) List every element of the set $\mathfrak{P}(C\backslash K)$, each element exactly once.
- 11. *You are not required to justify your answers in this question.*

Let $S = \{s, e, n, a, t, u, s\}, P = \{p, o, p, u, l, u, s, q, u, e\}, R = \{r, o, m, a, n, u, s\}.$

- (a) How many elements are there in the set *P*?
- (b) How many elements are there in the set $S \cup R$?
- (c) How many elements are there in the set $(S \cup R) \cap P$?
- (d) How many elements are there in the set $S \cup (R \cap P)$?
- (e) How many elements are there in the set $\{S\} \cup \{R \cap P\}$?
- (f) How many elements are there in the set $\{S \cup P\} \backslash \{R\}$?
- (g) List every element of the set $S \cap P \cap R$, each element exactly once.
- (h) List every element of the set $\mathfrak{P}(S \cap P \cap R)$, each element exactly once.

12. *You are not required to justify your answers in this question.*

Let $Q = \{q, u, o, d\}$, $E = \{e, r, a, t\}$, $D = \{d, e, m, o, n, s, t, r, a, n, d, u, m\}$.

- (a) How many elements are there in the set *D*?
- (b) How many elements are there in the set $(Q \cup E) \backslash D$?
- (c) How many elements are there in the set $Q \cup (E \backslash D)$?
- (d) How many elements are there in the set ${E} \cup {D \cap E}$?
- (e) List every element of the set $Q \cap D$, each element exactly once.
- (f) List every element of the set $\mathfrak{P}(Q \cap D)$, each element exactly once.
- 13. *You are not required to justify your answers in this question.*

Let $E = \{\emptyset, \mathbb{N}\}, F = \{\emptyset, \{\mathbb{N}\}\}, G = \{\{\emptyset\}, \mathbb{N}\}, H = \{\{\emptyset\}, \{\mathbb{N}\}\}.$

- (a) How many elements are there in the set *E*?
- (b) How many elements are there in the set $E \cup F \cup G \cup H$?
- (c) How many elements are there in the set *{E, F, H}*?
- (d) List every element of the set $E \cap F$, each element exactly once.
- (e) List every element of the set $G\backslash H$, each element exactly once.
- (f) List every element of the set $\mathfrak{P}(G)\backslash (E\cup G)$, each element exactly once.

14. *You are not required to justify your answers in this question.*

Let $A = \{x \in \mathbb{N} \setminus \{0,1\} : x^2 = n^3 \text{ for any } n \in \mathbb{Z}\}, B = \{x \in \mathbb{N} \setminus \{0,1\} : x^2 = n^3 \text{ for some } n \in \mathbb{Z}\}.$

- (a) Is *A* the empty set? If *yes*, just write ' $A = \emptyset$ '. If *no*, write ' $A \neq \emptyset$ ' and name one element of *A*.
- (b) Is *B* the empty set? If *yes*, just write ' $B = \emptyset$ '. If *no*, write ' $B \neq \emptyset$ ' and name one element of *B*.

15. *You are not required to justify your answers in this question.*

- Let $A = \{x \in \mathbb{N} \setminus \{0\} : x = r^2 r 12 \text{ for any } r \in \mathbb{Z}\}, B = \{x \in \mathbb{N} \setminus \{0\} : x = r^2 r 12 \text{ for some } r \in \mathbb{Z}\}.$
- (a) Is *A* the empty set? If *yes*, just write ' $A = \emptyset$ '. If *no*, write ' $A \neq \emptyset$ ' and also name one element of *A*.
- (b) Is *B* the empty set? If *yes*, just write ' $B = \emptyset$ '. If *no*, write ' $B \neq \emptyset$ ' and also name one element of *B*.
- 16. Consider each of the statements below. Determine whether it is true or not. Justify your answer.

You may take for granted that [√] 5 *is an irrational number whose value is between* 2 *and* 3*.*

- $\sqrt{5}$ ∈ {*x* ∈ |R : 1 ≤ *x* < 3}.
- (b) $\sqrt{5}$ ∈ {*x* ∈ |R : 1 ≤ *x* < 2}.
- $\sqrt{6}$ **∈** $\{x \in \mathbb{Q} : 1 \leq x < 3\}.$
- $($ d) $\sqrt{5}$ ∈ {*x* ∈ IR : *x*² ∈ N }.
- (e) $\sqrt{5}$ ∈ { $x \in \mathbb{R}: x = -r^2$ for some $r \in \mathbb{R}$ }.
- (f) $\sqrt{5} \in \{x \in \mathbb{R} : x = a + b\sqrt{5} \text{ for some } a, b \in \mathbb{Z}\}.$
- 17. Consider each of the 'infinite' collections of objects below. Apply the Method of Specification to express the collection as a set.
	- (a) $1, \frac{1}{2}$ $\frac{1}{2}, \frac{1}{4}$ $\frac{1}{4}, \frac{1}{8}$ $\frac{1}{8}, \frac{1}{16}$ $\frac{1}{16}, \cdots, \frac{1}{2^n}$ $\frac{1}{2^n}, \frac{1}{2^n}$ $\frac{1}{2^{n+1}}, \cdots$ (b) $1, \frac{3}{5}$ $\frac{3}{5}, \frac{9}{25}$ $\frac{9}{25}, \frac{27}{125}$ $\frac{27}{125}, \frac{81}{625}$ $\frac{61}{625}, \cdots,$ $\sqrt{3}$ 5)*ⁿ ,* $\sqrt{3}$ 5 \setminus^{n+1} *, · · ·*. (c)
		- 1 1 $\overline{\mathbf{3}}$ 1 9 1 27 1 81 *· · ·* 1 3 *n* 1 3 $\overline{n+1}$ \cdots 2 2 3 2 9 2 27 2 81 *· · ·* 2 3 *n* 2 3 $\overline{n+1}$ \cdots 4 4 3 4 $\overline{9}$ 4 $\overline{27}$ 4 81 *· · ·* 4 3 *n* 4 3 $\overline{n+1}$ \cdots 8 8 3 8 $\overline{9}$ 8 $\overline{27}$ 8 $\frac{1}{81}$ *· · ·* 8 3 *n* 8 3 $\overline{n+1}$ \cdots $16 \frac{16}{5}$ 3 16 $\overline{9}$ 16 $\overline{27}$ 16 $\overline{81}$ *· · ·* 16 3 *n* 16 $\overline{3^{n+1}}$ \cdots . 2^m *^m* 2 *m* 3 2 *m* 9 2 *m* 27 2 *m* 81 *· · ·* 2 *m* 3 *n* 2 *m* $\overline{3^{n+1}}$ \cdots 2^{m+1} 2 *m*+1 3 2 *m*+1 9 2 *m*+1 27 2 *m*+1 81 *· · ·* 2^{m+1} 3 *n* 2^{m+1} $\overline{3^{n+1}}$ \cdots . 2 *· · ·* 1*−e ⁿ* 1*−e n*+1 2 *· · · π−e ⁿ π−e n*+1 2 *n*+1

(d)

18. For each equation with unknown in the reals below, determine its solution set by solving for its general solution. *You are not required to give the 'checking step' explicitly, but be careful not to wrongly include false candidates amongst*

 $\frac{\infty}{2}$).

(a)
$$
\sin(2x) + \cos(x) = 0
$$
.
\n(b) $\tan^2(x) + 3 = 2\sec^2(x)$.
\n(c) $\cos(3x) = \cos(x)$.
\n(d) $\sin(x) + \sin(2x) + \sin(3x) = 0$.
\n(e) $\sin(2x) + \sin(4x) = \cos(x)$.
\n(f) $\cos(4x) + \cos(2x) = \cos(x)$.
\n(g) $2\cos(2x) + 5\sin(x) - 3 = 0$.
\n(h) $\sin(5x) + \sin(3x) = \cos(x)$.
\n(i) $12\cos(3x) - 5\sin(3x) = 13$.
\n(j) $\sin(3x + \frac{\pi}{4})\cos(3x - \frac{\pi}{4}) = \frac{3}{4}$.
\n(j) $\sin(3x + \frac{\pi}{4})\cos(3x - \frac{\pi}{4}) = \frac{3}{4}$.
\n(k) $\cos(4x) - 2\sin^2(2x) = -2\sin^2(2x) = -2\sin$

19.^{*≽*} Solve for all real solutions of the equation $\sin^2(3θ) - \sin^2(2θ) - \sin(θ) = 0$.

Remark. Express
$$
\sin^2(\mu) - \sin^2(\nu)
$$
 in terms of $\cos(\mu + \nu)$, $\cos(\mu - \nu)$, $\sin(\mu + \nu)$, $\sin(\mu - \nu)$.

20.^{\diamond} Solve for all real solutions of the equation $\cos^2(2\theta) - \sin^2(3\theta) + \cos(\theta)\sin(5\theta) = 0$.

Remark. Express $\cos^2(\mu) - \sin^2(\nu)$ in terms of $\cos(\mu + \nu)$, $\cos(\mu - \nu)$, $\sin(\mu + \nu)$, $\sin(\mu - \nu)$.

21. \Diamond Solve for all real solutions of the equation $sin(4x) - sin(3x) + sin(2x) - sin(x) = 0$.

Remark. Express $\sin(4\theta) - \sin(3\theta) + \sin(2\theta) - \sin(\theta)$ in the form $A\sin(\frac{\theta}{2})\cos(p\theta)\cos(q\theta)$. Here A, p, q are some real numbers whose values you have to determine.

22.[♦] Solve for all real solutions of the equation $(4\cos^2(x) - 3)\sin(2x) = \sin(x)$.

Remark. Express $\cos(3\theta)$ in terms of $\cos(\theta)$.

the solution, nor wrongly ignore a genuine solution.

23. (a) Let $\alpha, \beta, k \in \mathbb{R}$. Suppose $\tan(\alpha)$, $\tan(\beta)$ are well-defined as real numbers. Further suppose that $\tan(\alpha) = k \tan(\beta)$. i. Prove that $\sin(\alpha + \beta) = (k+1)\cos(\alpha)\sin(\beta)$.

ii. Hence deduce that $(k + 1) \sin(\alpha - \beta) = (k - 1) \sin(\alpha + \beta)$.

(b) Let $\theta, k \in \mathbb{R}$. Suppose $\tan(\theta + \frac{\pi}{\pi})$ $\frac{\pi}{18}$, tan($\theta - \frac{\pi}{9}$ $\frac{\pi}{9}$) are well-defined as real numbers and $\tan(\theta + \frac{\pi}{18})$ $(\frac{\pi}{18}) = k \tan(\theta - \frac{\pi}{9})$ $\frac{\pi}{9}$). i. Prove that $\sin(2\theta - \frac{\pi}{\pi})$ $\frac{\pi}{18}$) = $\frac{k+1}{2(k-1)}$.

ii. Determine all possible values of *k*.

(c) Solve for all real solutions of the equation $tan(x + \frac{\pi}{\pi})$ $\frac{\pi}{18}$) = -2 tan($x - \frac{\pi}{9}$ $\frac{1}{9}$).

24. Let $z = \frac{1 + \sqrt{3}i}{\sqrt{3} + i}$. Express *z* in polar form. Hence find arg(*z*²⁰¹⁸).

25. Let $\zeta = 1 + i$. Find:

- (a) the square roots of *ζ*,
- (b) the cube roots of *ζ*,
- (c) the quartic roots of *ζ*.

Leave your answer in polar form.

26. Let $\zeta = \sin(\frac{2\pi}{3}) + i\cos(\frac{2\pi}{3})$. Express ζ in polar form. Hence find the three cube roots of ζ , expressing your answer in polar form.

27. (a) Solve for all real solutions of the equation $\cos(x) = \frac{1}{\sqrt{2}}$ with unknown *x*.

(b) Let *m* be a positive integer.

i. Let $r, \theta \in \mathbb{R}$, and $z = r(\cos(\theta) + i\sin(\theta))$. Show that $z^m + \overline{z}^m = 2r^m \cos(m\theta)$.

ii. Express $\left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right)$)*^m* $^{+}$ $\left(\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}\right)$)*^m* in the form $A\cos(B\theta)$, in which A, B are real numbers, possibly dependent on *m*.

> *√* 2.

iii. Hence or otherwise, find all possible values of *m* for which $\left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right)$)*^m* + $\left(\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}\right)$)*^m* =

- 28. (a) Let *p* be a positive integer. Find all possible values of *p* for which $(1+i)^p (1-i)^p = 0$.
	- (b) Hence, or otherwise, find the value of $\frac{(1+i)^{4k+1}}{(4-i)^{4k+1}}$ $\frac{(1+i)}{(1-i)^{4k-1}}$, where *k* is a positive integer.
- 29. (a) Let θ be a real number. Suppose θ is not an integral multiple of π .

Let $\omega = \cos(\theta) + i \sin(\theta)$. Suppose $\omega^2 - 2\bar{\omega} + \frac{1}{\sqrt{\theta}}$ $\frac{1}{\omega}$ is real. Find the two possible values of ω .

- (b) Denote by α, β the two values of ω obtained in the previous part.
	- i. Prove that $\alpha^2 = \beta$ and $\beta^2 = \alpha$.
	- ii. Find the respective values of α^3 and β^3 .
	- iii. Suppose *n* is an integer. Find all possible values of $\alpha^n + \beta^n$.
- 30. (a) i. Let $\theta \in \mathbb{R}$, and $\omega = \cos(\theta) + i \sin(\theta)$. Let *n* be a positive integer.

Prove that
$$
\omega^n + \frac{1}{\omega^n} = 2\cos(n\theta)
$$
 and $\omega^n - \frac{1}{\omega^n} = 2i\sin(n\theta)$.

ii. Hence find all complex numbers which satisfies $\frac{(z^2 - 1/z^2)i}{z^2 - 1/(z^2)}$ $\frac{z^2 + 1/z^2}{z^2 + 1/z^2} = -$ *√* 3.

- (b) Consider the polynomial $f(x) = x^2 x + 1$.
	- i. Express, in polar form, the roots of $f(x)$.
	- ii. Let α, β be the roots of $f(x)$. Let k be an integer. Find the quadratic polynomial with leading coefficient 1 whose roots are $\left(\frac{\alpha}{a}\right)$ *β* \int_0^k and $\left(\frac{\beta}{\alpha}\right)$ *α* \setminus^k for the various scenarios below: A. $k = 3p$ for some $p \in \mathbb{Z}$.
		- B. $k = 3q + 1$ for some $q \in \mathbb{Z}$.
		- C. $k = 3r + 2$ for some $r \in \mathbb{Z}$.
- 31.^{\diamond} Let $\theta \in \mathbb{R}$ and $z = \cos(\theta) + i \sin(\theta)$.

(a) Let
$$
n \in \mathbb{N} \setminus \{0\}
$$
. Prove that $2^n \cos^n(\theta) = \left(z + \frac{1}{z}\right)^n$ and $2^n i^n \sin^n(\theta) = \left(z - \frac{1}{z}\right)^n$.

(b) Hence, or otherwise, deduce the results below:

i.
$$
\cos^7(\theta) = \frac{1}{2^C} \sum_{j=0}^7 A_j \cos(j\theta)
$$
 and $\sin^7(\theta) = \frac{1}{2^D} \sum_{j=0}^7 B_j \sin(j\theta)$.
\nHere $A_0, A_1, A_2, ..., A_7, B_0, B_1, B_2, ..., B_7, C, D$ are integers whose respective value you have to determine.
\nii. $\cos^8(\theta) = \frac{1}{2^C} \sum_{j=0}^8 A_j \cos(j\theta)$ and $\sin^8(\theta) = \frac{1}{2^D} \sum_{j=0}^8 B_j \cos(j\theta)$.
\nHere $A_0, A_1, A_2, ..., A_8, B_0, B_1, B_2, ..., B_8, C, D$ are integers whose respective value you have to determine.

Remark. Can you generalize the idea for the situation of $\cos^n(\theta)$, $\sin^n(\theta)$, in which *n* is an arbitrary positive integer?

32.^{\heartsuit} Let $n \in \mathbb{N}$. Let α, θ be real numbers. Suppose $\sin(\theta/2) \neq 0$.

(a) Prove that

$$
\sum_{k=0}^{n} \cos(\alpha + k\theta) = \frac{\sin((n+1)\theta/2)\cos(\alpha + n\theta/2)}{\sin(\theta/2)}, \text{ and } \sum_{k=0}^{n} \sin(\alpha + k\theta) = \frac{\sin((n+1)\theta/2)\sin(\alpha + n\theta/2)}{\sin(\theta/2)}.
$$

(b) Suppose $n \geq 3$. Write $\varphi = \frac{2\pi}{n}$ *n*. Let $\omega_n = \cos(\varphi) + i\sin(\varphi)$. Let $\eta \in \mathbb{C}$. Suppose $|\eta| = 1$. Prove that $\sum_{n=1}^{n-1}$ *k*=0 $|\eta - \omega_n^k|^2 = 2n$.

Remark. Below is the geometric interpretation of the result. Consider the regular *n*-sided polygon with vertices $1, \omega_n, \omega_n^2, \cdots, \omega_n^{n-1}$. The sum of the squares of the lengths of the *n* chords joining respectively the *n* points of this polygon with any one point on the unit circle with centre 0 is the constant *n*.

33. Write $\theta = \frac{2\pi}{\epsilon}$ $\frac{\partial}{\partial n}$, $\omega = \cos(\theta) + i \sin(\theta)$, $\sigma = \omega + \omega^4$, $\tau = \omega^2 + \omega^3$. Let $g(u)$ be the polynomial given by $g(u) = u^2 + u - 1$.

- (a) Verify that $1 + \omega + \omega^2 + \omega^3 + \omega^4 = 0$.
- (b) Verify that σ, τ are the distinct real roots of the polynomial $g(u)$.
- (c) i. Prove that $\text{Re}(\omega) = a + b\sqrt{M}$. Hence, or otherwise, find the value of ω . Here *a, b* are rational numbers and *M* is an integer. You have to determine the explicit value of *a, b, M*. ii. Prove that $Re(\omega^2) = c + d$ \sqrt{N} . Hence, or otherwise, find the value of ω^2 .
	- Here *c, d* are rational numbers and *N* is an integer. You have to determine the explicit value of *c, d, N*. iii. Find the respective values of ω^3 , ω^4 .
- 34. Let $A = \{x \in \mathbb{R} : x^2 2x 3 \le 0\}, B = \{x \in \mathbb{R} : -1 \le x \le 3\}.$

Prove that $A = B$.

35. Let
$$
A = \{x \in \mathbb{Z} : x = k^4 \text{ for some } k \in \mathbb{Z}\}, B = \{x \in \mathbb{Z} : x = k^2 \text{ for some } k \in \mathbb{Z}\}.
$$

- (a) Prove that $A ⊂ B$.
- (b) Prove that $B \not\subset A$.

36. Let $A = \{x \mid x = 54m^6 \text{ for some } m \in \mathbb{Z}\}, B = \{x \mid x = 2m^3 \text{ for some } m \in \mathbb{Z}\}.$

- (a) Prove that $A \subset B$.
- (b) Prove that $B \not\subset A$.
- 37. *In this question you may take for granted the validity of the statements below:*
	- *• Suppose p, q be distinct positive prime numbers. Then [√]pq is irrational.*
	- *• √* 6 *is an irrational number.*

Let $A = \{x \mid x = s + t\sqrt{2} \text{ for some } s, t \in \mathbb{Z}\}, B = \{x \mid x = u + v\sqrt{3} \text{ for some } u, v \in \mathbb{Z}\}.$

- (a) ^{*√*} Prove that *A d B*.
- (b)^{\clubsuit} Prove that $A \cap B = \mathbb{Z}$.

38.^{\diamond} Let $A = \{n \in \mathbb{Z} : n \equiv 1 \pmod{3}\}, B = \{n \in \mathbb{Z} : n \equiv 4 \pmod{9}\}.$

- (a) Prove that $B \subset A$.
- (b) Prove that $A \not\subset B$.

39. Let $C = \{ \zeta \in \mathbb{C} : \text{Re}(\zeta) \ge 0 \}, D = \{ \zeta \in \mathbb{C} : \text{Im}(\zeta) \ge 0 \}, E = \{ \zeta \in \mathbb{C} : |\zeta - 1 - i| \le 1 \}.$

- (a) ^{*≽*} Prove that *E ⊂ C* ∩ *D*.
- (b) Prove that $C \not\subset D$.
- (c) Prove that $D \not\subset C$.

40. Let $A = \{z \mid z = 8^m(\cos(6m) + i\sin(6m)) \text{ for some } m \in \mathbb{Z}\}, B = \{z \mid z = 2^m(\cos(2m) + i\sin(2m)) \text{ for some } m \in \mathbb{Z}\}.$

- (a) Prove that $A \subset B$.
- (b) Prove that $B \not\subset A$.

41. Let $A = \{z \in \mathbb{C} : z^2 = ri \text{ for some } r \in \mathbb{R}\}, B = \{z \in \mathbb{C} : z^6 = ri \text{ for some } r \in \mathbb{R}\}.$

- (a) Prove that $A \subset B$.
- (b)^{\diamond} Prove that *B* \subset *A*.

Remark. The *polar form for complex numbers* and *De Moivre's Theorem* are useful.

42. Let $A = \{x \in \mathbb{R} : x^2 - x \ge 0\}, B = \{x \in \mathbb{R} : x \le 0\}, C = \{x \in \mathbb{R} : x \ge 1\}.$ Prove that $A = B \cup C$.

 $43.\diamond$ ⁶ Let $A = \{x \in \mathbb{Q} : x = r^3 \text{ for some } r \in \mathbb{Q}\}, B = \{x \in \mathbb{Q} : x = r^9 \text{ for some } r \in \mathbb{Q}\},$ $C = \{x \in \mathbb{Z} : x = r^3 \text{ for some } r \in \mathbb{Q}\}, D = \{x \in \mathbb{Q} : x = r^3 \text{ for some } r \in \mathbb{Z}\}.$

- (a) Is *A* a subset of Q? Is Q a subset of *A*? Justify your answer.
- (b) Is *A* a subset of *B*? Is *B* a subset of *A*? Justify your answer.
- (c) Is *A* a subset of *C*? Is *C* a subset of *A*? Justify your answer.

(d) Is *A* a subset of *D*? Is *D* a subset of *A*? Justify your answer.

 $44.^\diamond$ Let $A = \{ \zeta \mid \zeta = m^3 + n^4 i \text{ for some } m, n \in \mathbb{N} \}, B = \{ \zeta \mid \zeta = m + n^8 i \text{ for some } m, n \in \mathbb{N} \}.$

- (a) Is it true that $A \subset B$? Justify your answer.
- (b) Is it true that $B \subset A$? Justify your answer.
- 45. Prove each of the statements below 'from first principles', using the definitions of set equality, intersection, union, complement, where appropriate.
	- (a) *Suppose A, B* are sets. Then $A \cap B \subset A$.
	- (b) *Suppose* A, B *be sets. Then* $A \subset A \cup B$ *.*
	- (c) *Suppose* A, B, C *be sets. Then* $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$ *.*
	- (d) *Suppose* A, B, C *be sets. Then* $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$ *.*
	- (e) *Suppose* A, B, C *be sets. Then* $(A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C)$ *.*
	- (f) *Suppose* A, B, C *be sets. Then* $(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$ *.*
	- (g) *Suppose A, B* are sets. Then $(A \cup B) \setminus A = B \setminus (A \cap B)$.
	- (h) *Suppose* A, B, C *are sets. Then* $A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$ *.*
- 46. Prove the statements below. *Where appropriate, you may apply results concerned with the properties of the set operations 'intersection', 'union' and 'complement'.*
	- (a) ^{\diamond} *Suppose A, B* are sets. Then $A \triangle B = (A \cup B) \setminus (A \cap B)$.
	- (b) *Suppose A, B* are *sets.* Then $A \triangle B = B \triangle A$.
	- $(c)^\heartsuit$ *Suppose A, B, C* are sets. Then $(A \triangle B) \triangle C = A \triangle (B \triangle C)$.
	- (d) ^{\bullet} *Suppose A, B, C be sets. Then* $A \cap (B \triangle C) = (A \cap B) \triangle (A \cap C)$ *.*
- 47.*♢* Let *A, B* be sets. Prove that the statements below are logically equivalent 'from first principles', using the definitions of set equality, subset relation, intersection, union, complement, where appropriate:
	- (I) $A \cap B = A$. (III) $A \cap B = A$. (III) $A \cup B = B$.
- 48.*♡* Prove that the Well-ordering Principle for integers, the (set-theoretic formulation of the) Principle of Mathematical Induction, the (set-theoretic formulation of the) Second Principle of Mathematical Induction are logically equivalent:
	- **Well-ordering Principle for integers**.

Suppose S be a non-empty subset of N*. Then S has a least element.*

• **Principle of Mathematical Induction**.

Let *T* be a subset of N. Suppose $0 \in T$. Further suppose that for any $k \in \mathbb{N}$, if $k \in T$ then $k + 1 \in T$. Then $T = N$.

• **Second Principle of Mathematical Induction**.

Let *U* be a subset of N. Suppose $0 \in U$. Further suppose that for any $k \in \mathbb{N}$, if $[0, k] \subset U$ then $k + 1 \in U$. Then $U = N$.