MATH1050 Exercise 6 (Answers and selected solution)

1. Answer.

(a) The statement $(P \to R) \to [(P \to Q) \land (Q \to R)]$ is neither a tautology nor a contradiction; it is a contingent statement.

P	Q	R	$P \! \rightarrow \! Q$	$Q \rightarrow R$	$P \rightarrow R$	$(P \!\rightarrow\! Q) \!\wedge\! (Q \!\rightarrow\! R)$	$(P \!\rightarrow\! R) \rightarrow [(P \!\rightarrow\! Q) \land (Q \!\rightarrow\! R)]$
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	F	F	F	Т
Т	F	Т	F	Т	Т	F	F
Т	F	F	F	Т	F	F	Т
F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	Т	F	Т	F	F
F	F	Т	Т	Т	Т	Т	Т
F	F	F	Т	Т	Т	Т	Т

Remark. Do you see what is wrong in the logic behind the word 'therefore' in the argument below?

- If John visits his girlfriend then John puts aside his books. Therefore, if John visits his girlfriend then John plays football; furthermore, if John plays football then John puts aside his books.
- (b) The statement $(P \to Q) \to [(P \to R) \lor (Q \to R)]$ is neither a tautology nor a contradiction; it is a contingent statement.

P	Q	R	$P \rightarrow Q$	$P \rightarrow R$	$Q \! ightarrow \! R$	$(P \!\rightarrow\! R) \!\vee\! (Q \!\rightarrow\! R)$	$\mid (P \!\rightarrow\! Q) \rightarrow [(P \!\rightarrow\! R) \vee (Q \!\rightarrow\! R)]$
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	F	F	F	F
Т	F	Т	F	Т	Т	Т	Т
Т	F	F	F	F	Т	Т	Т
F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	Т	Т	F	Т	Т
F	F	Т	Т	Т	Т	Т	Т
F	F	F	Т	Т	Т	Т	Т

2. Answer.

- (a) $\{0,1\}, \{1,2,3\}.$
- (b) $\{0,1\}, \{1\}, \{1,2,3\}, \{3,4\}, \{\{3\},\{4\}\}.$
- (c) $\{1\}, \{3, 4\}.$
- (d) $\{1\},\{3,4\},\{\{3\},\{4\}\}.$
- (e) \emptyset , {{1}}, {{3,4}}, {{1}, {3,4}}.
- 3. Answer.

(a) Five.	(c) Six.	(e) Two.	(g) c, r
(b) Nine.	(d) One.	(f) One.	(h) $\emptyset, \{c\}, \{r\}, \{c, r\}.$

4. Answer.

- (a) $A = \emptyset$.
- (b) $B \neq \emptyset$; 125 is an element of B.

5. (a) Solution.

We proceed to solve the equation (\dagger) :

$$\cos(2x) = \sin(x) - (\dagger)$$

$$1 - 2\sin^{2}(x) = \sin(x)$$

$$2\sin^{2}(x) + \sin(x) - 1 = 0$$

$$(\sin(x) + 1)(2\sin(x) - 1) = 0$$

$$\sin(x) = -1 \quad \text{or} \quad \sin(x) = \frac{1}{2}$$

(Case 1).

$$\sin(x) = -1$$

$$x = -\frac{\pi}{2} + K \cdot 2\pi \text{ where } K \in \mathbb{Z}$$

(Case 2).

$$\sin(x) = \frac{1}{2}$$
$$x = (-1)^M \cdot \frac{\pi}{6} + M\pi \text{ where } M \in \mathbb{Z}$$

The general solution of (†) is given by $x = -\frac{\pi}{2} + K \cdot 2\pi$ where $K \in \mathbb{Z}$, or $x = (-1)^M \cdot \frac{\pi}{6} + M\pi$ where $M \in \mathbb{Z}$. Define

$$A = \left\{ x \in \mathbb{R} : x = -\frac{\pi}{2} + K \cdot 2\pi \text{ for some } K \in \mathbb{Z} \right\},$$

$$B = \left\{ x \in \mathbb{R} : x = (-1)^M \cdot \frac{\pi}{6} + M\pi \text{ for some } M \in \mathbb{Z} \right\}.$$

The solution set of (\dagger) is given by $A \cup B$.

(b) Solution.

We proceed to solve the equation (\dagger) :

$$\sin(2x) + \sin(8x) = \sin(5x) - (\dagger)$$

$$\sin(5x - 3x) + \sin(5x + 3x) = \sin(5x)$$

$$2\sin(5x)\cos(3x) = \sin(5x)$$

$$(2\cos(3x) - 1)\sin(5x) = 0$$

$$\cos(3x) = \frac{1}{2} \quad \text{or} \quad \sin(5x) = 0$$

(Case 1).

$$\cos(3x) = \frac{1}{2}$$

$$3x = \pm \frac{\pi}{3} + K \cdot 2\pi \quad \text{where } K \in \mathbb{Z}$$

$$x = \pm \frac{\pi}{9} + K \cdot \frac{2\pi}{3}$$

(Case 2).

$$\sin(5x) = 0$$

$$5x = M\pi \text{ where } M \in \mathbb{Z}$$

$$x = M \cdot \frac{\pi}{5}$$

The general solution of (†) is given by $x = \pm \frac{\pi}{9} + K \cdot \frac{2\pi}{3}$ where $K \in \mathbb{Z}$, or $x = M \cdot \frac{\pi}{5}$ where $M \in \mathbb{Z}$. Define

$$A = \left\{ x \in \mathbb{R} : x = \frac{\pi}{9} + K \cdot \frac{2\pi}{3} \text{ for some } K \in \mathbb{Z} \right\},$$

$$B = \left\{ x \in \mathbb{R} : x = -\frac{\pi}{9} + L \cdot \frac{2\pi}{3} \text{ for some } L \in \mathbb{Z} \right\},$$

$$C = \left\{ x \in \mathbb{R} : x = M \cdot \frac{\pi}{5} \text{ for some } M \in \mathbb{Z} \right\}$$

The solution set of (\dagger) is given by $A \cup B \cup C$.

(c) Solution.

We proceed to solve the equation (\dagger) :

$$2\sin(\frac{x}{2})\sin(\frac{3x}{2}) = 1 \quad --- \quad (\dagger)$$

$$\cos(\frac{x}{2} - \frac{3x}{2}) - \cos(\frac{x}{2} + \frac{3x}{2}) = 1$$

$$\cos(-x) - \cos(2x) = 1$$

$$\cos(x) - (2\cos^{2}(x) - 1) = 1$$

$$(1 - 2\cos(x))\cos(x) = 0$$

$$\cos(x) = \frac{1}{2} \quad \text{or} \quad \cos(x) = 0$$

(Case 1).

$$\cos(x) = \frac{1}{2}$$
$$x = \pm \frac{\pi}{3} + K \cdot 2\pi \text{ where } K \in \mathbb{Z}$$

(Case 2).

$$\begin{array}{rcl} \cos(x) & = & 0 \\ & x & = & \frac{\pi}{2} + M\pi & \mbox{where } M \in \mathbb{Z} \end{array}$$

The general solution of (†) is given by $x = \pm \frac{\pi}{3} + K \cdot 2\pi$ where $K \in \mathbb{Z}$, or $x = \frac{\pi}{2} + M\pi$ where $M \in \mathbb{Z}$. Define

$$A = \left\{ x \in \mathbb{R} : x = \frac{\pi}{3} + K \cdot 2\pi \text{ for some } K \in \mathbb{Z} \right\},$$

$$B = \left\{ x \in \mathbb{R} : x = -\frac{\pi}{3} + K \cdot 2\pi \text{ for some } K \in \mathbb{Z} \right\},$$

$$C = \left\{ x \in \mathbb{R} : x = \frac{\pi}{2} + M\pi \text{ for some } M \in \mathbb{Z} \right\}$$

The solution set of (\dagger) is given by $A \cup B \cup C$.

(d) Solution.

Note that $6^2 + 8^2 = 100 = 10^2$. Take $\alpha = \arcsin(\frac{4}{5})$. Then $10\sin(\alpha) = 8$, $10\cos(\alpha) = 10\sqrt{1-\sin^2(\alpha)} = 6$. We proceed to solve the equation (†):

$$6\sin(x) + 8\cos(x) = 5 \quad (\dagger)$$

$$10\sin(x)\cos(\alpha) + 10\cos(x)\sin(\alpha) = 5$$

$$10\sin(x+\alpha) = 5$$

$$\sin(x+\alpha) = \frac{1}{2}$$

$$x+\alpha = (-1)^N \cdot \frac{\pi}{6} + N\pi \quad \text{where } N \in \mathbb{Z}$$

$$x = \alpha + (-1)^N \cdot \frac{\pi}{6} + N\pi$$

The general solution of (†) is given by $x = \alpha + (-1)^N \cdot \frac{\pi}{6} + N\pi$ where $N \in \mathbb{Z}$. The solution set of (†) is given by $\left\{ x \in \mathbb{R} : x = \alpha + (-1)^N \cdot \frac{\pi}{6} + N\pi \text{ for some } N \in \mathbb{Z} \right\}$.

(e) Solution.

We proceed to solve the equation (\dagger) :

$$\tan(3\sqrt{x}) = 1 \quad -- \quad (\dagger)$$
$$3\sqrt{x} = \frac{\pi}{4} + N \cdot \pi \quad \text{where } N \in \mathbb{N}$$
$$x = \left(\frac{1}{4} + N\right)^2 \cdot \frac{\pi^2}{9}$$

The general solution of (†) is given by $x = \left(\frac{1}{4} + N\right)^2 \cdot \frac{\pi^2}{9}$, where N is a natural number.

The solution set of (†) is given by $\left\{ x \in \mathbb{R} : x = \left(\frac{1}{4} + N\right)^2 \cdot \frac{\pi^2}{9} \text{ for some } N \in \mathbb{N} \right\}.$

(f) Solution.

We proceed to solve the equation (\dagger) :

$$\cos(\frac{1}{2x}) = 1 \quad --- \quad (\dagger)$$
$$\frac{1}{2x} = 2N \cdot \pi \quad \text{where } N \in \mathbb{Z} \setminus \{0\}$$
$$x = \frac{1}{4N \cdot \pi}$$

The general solution of (†) is given by $x = \frac{1}{4N \cdot \pi}$ where $N \in \mathbb{Z} \setminus \{0\}$. The solution set of (†) is given by $\left\{ x \in \mathbb{R} : x = \frac{1}{4N \cdot \pi} \text{ for some } N \in \mathbb{Z} \setminus \{0\} \right\}$.

6. Solution.

- (a) Let $z = \frac{2(\sqrt{3}-i)}{\sqrt{3}+i}$. Note that $z = \frac{2(\sqrt{3}-i)}{\sqrt{3}+i} = 2 \cdot \frac{(\sqrt{3}-i)/2}{(\sqrt{3}+i)/2} = 2 \cdot \frac{\cos(-\pi/6) + i\sin(-\pi/6)}{\cos(\pi/6) + i\sin(\pi/6)} = 2 \cdot \left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right)$.
- (b) i. We have $|z|^6 = 2^6$. Note that $2020 = 6 \cdot 336 + 4$. Then

$$z^{2020} = z^{6\cdot336+4} = (z^6)^{336} \cdot z^4 = (2^6)^{336} \cdot 2^4 \cdot \cos\left(-4 \cdot \frac{\pi}{3}\right) + i\sin\left(-4 \cdot \frac{\pi}{3}\right) = 2^{2020} \left(\cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)\right) = -2^{2019} + 2^{2019} \cdot \sqrt{3}i$$

ii. The square roots of z are $\pm\sqrt{2} \cdot \left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right)$ respectively. Expressed in standard form, they are $\frac{\sqrt{6}}{2} - \frac{\sqrt{2}}{2}i$, $-\frac{\sqrt{6}}{2} + \frac{\sqrt{2}}{2}i$ respectively.

7. (a) Solution.

We proceed to solve the equation (\star) :

$$z^{5} - 32i = 0 - (\star)$$

$$z^{5} = 32i$$

$$\left(\frac{z}{2i}\right)^{5} = 1$$

$$\frac{z}{2i} = \omega^{N}, \text{ where } N = 0, 1, 2, 3, 4$$

Here ω stands for the number $\cos(\frac{2\pi}{5}) + i\sin(\frac{2\pi}{5})$.

So the general solution of the equation (*) is given by $z = 2(\cos(\frac{\pi}{2} + N \cdot \frac{2\pi}{5}) + i\sin(\frac{\pi}{2} + N \cdot \frac{2\pi}{5}))$, where N = 0, 1, 2, 3, 4.

(b) Answer.

$$z = 2\left(\cos\left(\frac{\pi}{10}\right) + i\sin\left(\frac{\pi}{10}\right) \text{ or } z = 2\left(\cos\left(-\frac{3\pi}{10}\right) + i\sin\left(-\frac{3\pi}{10}\right) \text{ or } z = 2\left(\cos\left(-\frac{7\pi}{10}\right) + i\sin\left(-\frac{7\pi}{10}\right)\right) \right).$$

8. (a) *Hint*. You need De Moivre's Theorem. Also recall the for any η ∈ C, we have 2Re(η) = η + η̄ and 2iIm(η) = η − η̄.
(b) *Hint*. You need the Binomial Theorem.

9. Answer.

- (a) (I) $x \in A$ (II) There exists some (III) $x = 16m^{6}$ (IV) $2, m \in \mathbb{Z}$ (V) $x = 2(8m^{6}) = 2(2m^{2})^{3} = 2n^{3}$ (VI) $x \in B$ (b) (I) $x_{0} = 2 \cdot 1^{3}$ (II) 1 (III) $x_{0} \in B$ (IV) Suppose it were true that $x_{0} \in A$. (V) there would exist some $m \in \mathbb{Z}$ (VI) $2 \cdot (4m^{6}) = 8m^{6} = 1$ (VII) $4m^{6} \in \mathbb{Z}$
 - (VIII) divisible

10. Solution.

Let $A = \{x \mid x = r^6 \text{ for some } r \in \mathbb{Q}\}, B = \{x \mid x = r^2 \text{ for some } r \in \mathbb{Q}\}.$

(a) Pick any $x \in A$.

There exists some $r \in \mathbb{Q}$ such that $x = r^6$. Take $s = r^3$. Note that $s \in \mathbb{Q}$. We have $x = (r^3)^2 = s^2$. Hence $x \in B$. It follows that $A \subset B$.

(b) Let $x_0 = 4$.

Note that $x_0 = 2^2$ and $2 \in \mathbb{Q}$. Then $x_0 \in B$. We verify that $x_0 \notin A$:

Suppose it were true that x₀ ∈ A. Then there would exist some r ∈ Q such that x₀ = r⁶. Now 4 = r⁶. Since r ∈ ℝ, we would have r = ³√2 or r = -³√2. But ³√2, -³√2 ∉ Q. Contradiction arises. Therefore the assumption that x₀ ∈ A is false. We have x₀ ∉ A.

11. Solution.

Let $C = \{\zeta \in \mathbb{C} : |\zeta - 1| \le 1\}, D = \{\zeta \in \mathbb{C} : |\zeta| \le 2\}.$

(a) Pick any $\zeta \in C$. We have $|\zeta - 1| \leq 1$ (by the definition of C). By the Triangle Inequality, we have $|\zeta| - 1 \leq |\zeta - 1| \leq 1$. Then $|\zeta| \leq 2$. Therefore, we have $\zeta \in D$ (by the definition of D). It follows that $C \subset D$. (b) Take ζ₀ = −1. We have ζ₀ ∈ C. Note that |ζ₀| = 1 ≤ 2. Then ζ₀ ∈ D. We verify that ζ₀ ∉ C:
• We have |ζ₀ − 1| = | − 1 − 1| = 2 > 1. Then ζ₀ ∉ C. It follows that D ⊄ C.

12. **Answer.**

(a) (I) $A \cup B \subset B$

- (II) it were true that $A \setminus B \neq \emptyset$
- (III) $x_0 \in A \setminus B$
- (IV) $x_0 \in A$
- (V) $x_0 \in B$
- (VI) $x_0 \in A \cup B$
- (VII) $x_0 \in B$
- (VIII) Contradiction arises
- (b) —

13. (a) **Solution.**

Let A, B, C, D be sets. Suppose $A \subset C$ and $B \subset D$.

Pick any object x.

Suppose $x \in A \cup B$. Then $x \in A$ or $x \in B$.

(Case 1). Suppose $x \in A$. Then, since $A \subset C$, we have $x \in C$. Therefore $x \in C$ or $x \in D$. Hence $x \in C \cup D$. (Case 2). Suppose $x \notin A$. Then $x \in B$. Therefore, since $B \subset D$, we have $x \in D$. Then $x \in C$ or $x \in D$. Hence $x \in C \cup D$.

Hence in any case, we have $x \in C \cup D$.

It follows that $A \cup B \subset C \cup D$.

14. —

```
15. Answer.
```

(a) False. (b) True. (c) False. (d) False. (e) True.

16. Solution.

Consider the predicate ' $x \notin x$ ', which we denote by P(x).

- (a) Denote by R the object $\{x \mid P(x)\}$. Suppose it were true that R was a set.
 - i. Suppose it were true that the object R is an element of the set R. Then $R \in R$. By the definition of R, P(R) is a true statement. Then $R \notin R$. We have $R \in R$ and $R \notin R$. Contradiction arises. Hence the object R is not an element of the set R.
 - ii. Suppose it were true that the object R is not an element of the set R. Then $R \notin R$. Therefore, P(R) is a true statement. Hence, by the definition of R, $R \in R$. We have $R \notin R$ and $R \in R$. Contradiction arises. Hence the object R is an element of the set R.

Remark. Hence the object R is not a set in the first place. The failure of the construction $\{x \mid x \notin x\}$ in giving a set is known as **Russell's Paradox**.

(b) Let A be a set. Denote by B the object $\{x \in A : P(x)\}$.

Suppose B were an element of A. Then $B \in A$. We have $B \in B$ or $B \notin B$.

- (Case 1). Suppose $B \in B$. Then, by the definition of B, P(B) is a true statement. Therefore $B \notin B$. We have $B \in B$ and $B \notin B$. Contradiction arises.
- (Case 2). Suppose $B \notin B$. Then P(B) is a true statement, Therefore, by the definition of $B, B \in B$. We have $B \notin B$ and $B \in B$. Contradiction arises.

Hence, in every case, contradiction arises. ${\cal B}$ is not an element of ${\cal A}$ in the first place.