MATH1050 Exercise 5 Supplement

- 1. Let n be an integer greater than 1.
 - (a) Prove that $\binom{2n-1}{n-1} \binom{2n-1}{n-2} = \frac{(2n)!}{(n!)[(An+B)!]}$. Here A, B are appropriate positive integers whose respective values you have to determine explicitly.
 - (b) Hence, or otherwise prove that $\begin{pmatrix} 2n \\ n \end{pmatrix}$ is divisible by n + 1.
- 2. Let n be a positive integer.
 - (a) Prove that $2\binom{3n+1}{n} \binom{3n+1}{n+1} = \frac{(3n+1)!}{[(n+A)!][(2n+B)!]}$. Here A, B are appropriate positive integers whose respective values you have to determine explicitly.
 - (b) Hence, or otherwise prove that $\begin{pmatrix} 3n+1\\n \end{pmatrix}$ is divisible by n+1, and $\begin{pmatrix} 3n+1\\n+1 \end{pmatrix}$ is divisible by 2n+1.

3.[•] Let a be a real number, n be a positive integer, and f(x) be the polynomial given by $f(x) = (1 + x + ax^2)^{6n}$. Denote the coefficients of the x-term, the x^2 -term, and the x^3 -term in the polynomial f(x) by k_1, k_2, k_3 respectively.

- (a) Express k_1, k_2, k_3 in terms of a.
- (b) Suppose k_1, k_2, k_3 are in arithmetic progression.
 - i. Prove that $a = \frac{An^2 + Bn + C}{9(2n-1)}$. Here A, B, C are some appropriate integers whose values you have to determine explicitly.
 - ii. Further suppose $a \ge 0$. What is the value of n? Justify your answer.
- 4. \diamond Let m, n be positive integers. Suppose m > n. Let f(x) be the polynomial given by $f(x) = (1+x)^{mn}(1-x)^{m(n-1)}$. Prove that the coefficients of the x-term and the x^2 -term are equal to each other iff m = 2n + 1.
- 5. Apply mathematical induction to prove the statements below:
 - (a) $\sum_{k=2}^{n} \binom{n}{2} = \binom{n+1}{3}$ for any integer greater than 1.
 - (b) $n! < \left(\frac{n}{2}\right)^n$ for any integer greater than 5.
 - (c) $\frac{2^{2n}}{2n} < \begin{pmatrix} 2n \\ n \end{pmatrix} < \frac{2^{2n}}{4}$ for any integer greater than 7.
- 6. Prove the statement below:
 - Let a, n be positive integers. Suppose $n \ge a$. Then $(2a-1)^n + (2a)^n < (2a+1)^n$.

Remark. There is no need to apply mathematical induction.

7.^{\diamond} Let *m* be a positive integer. Prove that $\sum_{k=0}^{m} 2^{2k} \begin{pmatrix} 2m \\ 2k \end{pmatrix} = \frac{A^m + B}{2}$. Here *A*, *B* are some positive integers whose respective values you have to determine explicitly.

- $8.^{\diamond}$ Prove the statement below, which is known as **Vandemonde's Theorem**:
 - Let p, q, r be non-negative integers. Suppose $r \le p+q$. Then $\sum_{k=0}^{r} {p \choose k} {q \choose r-k} = {p+q \choose r}$.

(*Hint.* Note that $(1+x)^{p+q} = (1+x)^p (1+x)^q$ as polynomials.)

9.^{\diamond} Let *n* be a positive integer. Find the respective values of the numbers below. Leave your answer in terms of *n*.

(a)
$$\sum_{k=0}^{n} {\binom{n}{k}}^2$$
. (b) $\sum_{k=0}^{n} (-1)^k {\binom{n}{k}}^2$.

10. Let n be a positive integer, and $f : \mathbb{R} \longrightarrow \mathbb{R}$ by $f(x) = (1+x)^n$ for any $x \in \mathbb{R}$.

- (a) Suppose $n \ge 3$. By differentiating f, or otherwise, prove that $\sum_{k=0}^{n} \frac{k(k-1)(k-2)}{3^k} \binom{n}{k} = \frac{n(n-1)(n-A) \cdot B^{n-C}}{3^n}$. Here A, B, C are some appropriate integers whose respective values you have to determine explicitly.
- (b) By integrating f, or otherwise, prove that $\sum_{k=0}^{n} \frac{2^k}{(k+3)(k+2)(k+1)} \binom{n}{k} = \frac{A^{n+3} 1 2(n+B)^2}{C(n+3)(n+2)(n+1)}$.

Here A, B, C are some appropriate integers whose respective values you have to determine explicitly.

- 11. (a) Let n, m be positive integers.
 - i.^{\diamond} Verify the equality $x[(1+x)^n + (1+x)^{n+1} + \dots + (1+x)^{n+m}] = (1+x)^{n+m+1} (1+x)^n$ for polynomials. ii.^{\bullet} Let k be a positive integer. Write $c_{n,m,k} = \binom{n}{k} + \binom{n+1}{k} + \binom{n+2}{k} + \dots + \binom{n+m}{k}$.
 - A. Suppose k < n. What is the value of $c_{n,m,k}$? Leave your answer in terms of n, m, k where appropriate.
 - B. Suppose $n \leq k \leq n+m$. What is the value of $c_{n,m,k}$? Leave your answer in terms of n, m, k where appropriate.
 - (b) Let m be a positive integer.
 - i. \clubsuit Applying the results in the previous parts, or otherwise, prove that

$$\sum_{r=5}^{m+4} r(r-1)(r-2)(r-3) = 24\left(\binom{m+5}{5} - 1\right).$$

ii. Hence, or otherwise, find the value of $\sum_{r=0}^{m+4} r(r-1)(r-2)(r-3)$. Leave your answer in terms of m where appropriate.

- 12. For each $n \in \mathbb{N} \setminus \{0, 1\}$, define $a_n = \sqrt[n]{n} 1$.
 - (a) Prove that $a_n \ge 0$ for any $n \in \mathbb{N} \setminus \{0, 1\}$.
 - (b) By applying the Binomial Theorem to the expression $(1 + a_n)^n$, prove that $a_n \leq \sqrt{\frac{2}{n-1}}$ for any $n \in \mathbb{N} \setminus \{0, 1\}$.

Remark. The inequalities described here constitute the key step in the argument for the statement ' $\lim_{n \to \infty} \sqrt[n]{n} = 1$ '.

13. Familiarity with the calculus of one variable is assumed in this question.

Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be the function defined by $f(x) = e^{x^2/2}$ for any $x \in \mathbb{R}$.

Take for granted that the exponential function $\exp: \mathbb{R} \longrightarrow \mathbb{R}$ is differentiable on \mathbb{R} , and every polynomial function is differentiable on \mathbb{R} .

- (a) Verify that f'(x) = xf(x) for any $x \in \mathbb{R}$.
- (b) Apply mathematical induction to prove the statement (\sharp) :
 - (\sharp) Let $n \in \mathbb{N} \setminus \{0\}$. The function f is (n+1)-times differentiable, and for any $x \in \mathbb{R}$,

$$f^{(n+1)}(x) = xf^{(n)}(x) + nf^{(n-1)}(x)$$

- (c) $^{\heartsuit}$ Apply mathematical induction to prove the statement (b):
 - (b) Let $n \in \mathbb{N} \setminus \{0\}$. There exists some polynomial function P_n of degree n and with leading coefficient 1 such that $f^{(n)}(x) = P_n(x)e^{x^2/2}$ for any $x \in \mathbb{R}$.

(d)^{\$\lapha\$} Prove that
$$f^{(n)}(0) = \begin{cases} 0 & \text{if } n \text{ is odd} \\ \frac{n!}{2^{n/2}[(n/2)!]} & \text{if } n \text{ is even} \end{cases}$$

14. Familiarity with the calculus of one variable is assumed in this question.

Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be the function defined by $f(x) = \frac{1}{1+x^2}$ for any $x \in \mathbb{R}$.

Take for granted that f is smooth on \mathbb{R} .

(a) i. By applying mathematical induction, or Leibniz's Rule, prove that for any $n \in \mathbb{N}$, for any $x \in \mathbb{R}$,

 $(1+x^2)f^{(n+2)}(x) + 2(n+2)xf^{(n+1)}(x) + (n+2)(n+1)f^{(n)}(x) = 0.$

- ii. Determine the value of $f^{(n)}(0)$ for each n.
- (b) For each $n \in \mathbb{N}$, define the function $g_n : \mathbb{R} \longrightarrow \mathbb{R}$ by $g_n(x) = (1 + x^2)^{n+1} f^{(n)}(x)$ for any $x \in \mathbb{R}$. Take for granted that g_n is smooth on \mathbb{R} for each n.
 - i. Applying the results above, or otherwise, prove that for any $n \in \mathbb{N}$, for any $x \in \mathbb{R}$,

 $g_{n+2}(x) + 2(n+2)xg_{n+1}(x) + (n+2)(n+1)(1+x^2)g_n(x) = 0.$

ii.^{\diamond} Hence, or otherwise, deduce that for any $n \in \mathbb{N}$, for any $x \in \mathbb{R}$,

$$(1+x^2)g_n''(x) - 2nxg_n'(x) + n(n+1)g_n(x) = 0.$$

iii.[•] Applying mathematical induction, or otherwise, prove that for each $n \in \mathbb{N}$, g_n is a polynomial function of degree n and with leading coefficient $(-1)^n [(n+1)!]$.

15. Familiarity with the calculus of one variable is assumed in this question.

For each $n \in \mathbb{N}$, define the function $f_n : \mathbb{R} \longrightarrow \mathbb{R}$ by $f_n(x) = x^n |x|$ for any $x \in \mathbb{R}$.

Take for granted that f_n is smooth at every point in $\mathbb{R}\setminus\{0\}$. (The point in this question is the behaviour of the function f_n at and near 0.)

(a) i. Verify that f_0 is continuous at 0.

ii. Verify that f_0 is not differentiable at 0.

- (b) Verify that for any $n \in \mathbb{N} \setminus \{0\}$, the function f_n is differentiable at 0, and $f'_n(0) = 0$.
- (c) Verify that for each $n \in \mathbb{N} \setminus \{0\}$, $f'_n(x) = (n+1)f_{n-1}(x)$ for any $x \in \mathbb{R}$.
- (d)^{\diamond} By applying the Telescopic Method, or otherwise, prove that for any $n \in \mathbb{N} \setminus \{0\}$, for each $k = 1, 2, \dots, n$, there exists some $A_{n,k} \in \mathbb{R}$ such that $f_n^{(k)}(x) = A_{n,k} f_{n-k}(x)$ for any $x \in \mathbb{R} \setminus \{0\}$.
- (e) \diamond Prove that for any $n \in \mathbb{N} \setminus \{0\}$, the function f_n is *n*-times continuously differentiable at 0, and $f_n^{(k)}(0) = 0$ for each $k = 1, 2, \dots, n$.

Remark. Proceed as described here:

Let $n \in \mathbb{N} \setminus \{0\}$. Denote by Q(k) the proposition below:

 f_n is k-times continuously differentiable at 0, and $f_n^{(k)}(0) = 0$.

First verify that Q(0) is true. Next, verify that for each $k = 1, 2, \dots, n-1$, if Q(k) is true then Q(k+1) is true.

It will then follow (from a repeated application of modus ponens and hypothetical syllogism) that each of $Q(0), Q(1), Q(2), \dots, Q(n)$ are all true.

Such an argument is referred to as **finite induction**.

(f) Prove that f_n is not (n + 1)-times differentiable at 0 for each $n \in \mathbb{N} \setminus \{0\}$.

16. Familiarity with the calculus of one variable is assumed in this question. For each $n \in \mathbb{N}$, define the function $f_n : \mathbb{R} \longrightarrow \mathbb{R}$ by

$$f_n(x) = \begin{cases} -x^n \ln(x^2) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

Take for granted the result $\lim_{x\to 0^{\pm}} f_0(x) = +\infty$. Also take for granted the result that f_n is smooth at every point of $\mathbb{R}\setminus\{0\}$. (The point in this question is the behaviour of the function f_n at and near 0.)

- (a) By applying L'Hôpital's Rule, or otherwise, verify that $\lim_{x\to 0^{\pm}} f_n(x) = 0$ respectively for each $n \in \mathbb{N} \setminus \{0\}$. (There is no need to apply mathematical induction.)
- (b) Prove that f_1 is continuous at 0 but not differentiable at 0.

- (c) Suppose $n \in \mathbb{N} \setminus \{0, 1\}$. Prove the statements below:
 - i. f_n is differentiable at 0, and $f'_n(0) = 0$.
 - ii. $f'_n(x) = nf_{n-1}(x) 2x^{n-1}$ for any $x \in \mathbb{R}$.
 - iii. f_n is continuously differentiable at 0.
- (d) By applying the Telescopic Method, or otherwise, prove that for each $n \in \mathbb{N} \setminus \{0, 1\}$, for each $k = 1, 2, \dots, n-1$, there exists some $A_{n,k} \in \mathbb{R}$ such that $f_n^{(k)}(x) = \frac{n!}{(n-k)!} f_{n-k}(x) A_{n,k} x^{n-k}$ for any $x \in \mathbb{R} \setminus \{0\}$.
- (e) Hence, or otherwise, deduce that for each $n \in \mathbb{N} \setminus \{0, 1\}$, the function f_n is (n-1)-times continuously differentiable at 0, and $f_n^{(k)}(0) = 0$ for each $k = 1, 2, 3, \dots, n-1$.
- (f) Prove that f_n is not *n*-times differentiable at 0 for each $n \in \mathbb{N} \setminus \{0, 1\}$.
- 17. Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a function. Suppose that f(x+y) = f(x)f(y) for any $x, y \in \mathbb{R}$. Further suppose that f is not a constant function.
 - (a) Prove that f(0) = 1.
 - (b) \diamond Prove that $f(x) \ge 0$ for any $x \in \mathbb{R}$.
 - (c) Prove that for any $x \in \mathbb{R}$, f(x) > 0 and f(-x) > 0 and $f(-x) = \frac{1}{f(x)}$.
 - (d) Prove that $f(nx) = (f(x))^n$ for any $n \in \mathbb{N}$ for any $x \in \mathbb{R}$.
 - (e) Prove that $f(mx) = (f(x))^m$ for any $m \in \mathbb{Z}$ for any $x \in \mathbb{R}$.
 - (f) Prove that $f(rx) = (f(x))^r$ for any $r \in \mathbb{Q}$, for any $x \in \mathbb{R}$.
 - (g) Familiarity with the calculus of one variable is assumed in this part. Take for granted the validity of the results below:
 - For any $u \in \mathbb{R}$, there exists some infinite sequence of rational numbers $\{s_n\}_{n=0}^{\infty}$ such that $\lim_{n \to \infty} s_n = u$.

Now suppose f is continuous on \mathbb{R} .

Prove that there exists some positive real number c such that $f(x) = c^x$ for any $x \in \mathbb{R}$.

18. Familiarity with the calculus of one variable is assumed in this question.

Let $f:[0,+\infty) \longrightarrow \mathbb{R}$ be a continuous function. Suppose that for any $x \in [0,+\infty)$,

$$f(x) \ge 0$$
 and $f(x) \ge 1 + \int_0^x 2uf(u)du$.

(a) Apply mathematical induction to prove that for any $n \in \mathbb{N}$, $f(x) \ge \sum_{j=0}^{n} \frac{x^{2j}}{j!}$ for any $x \in [0, +\infty)$.

(b) Prove that $f(\sqrt{e}) \ge e^e$.