MATH1050 Exercise 5 Supplement

- 1. Let *n* be an integer greater than 1.
	- (a) Prove that $\begin{pmatrix} 2n-1 \\ 2n-1 \end{pmatrix}$ *n −* 1 \setminus *−* $\left(2n-1\right)$ *n −* 2 \setminus $=\frac{(2n)!}{(n!)[(An+B)!]}$. Here *A, B* are appropriate positive integers whose respective values you have to determine explicitly.
	- (b) Hence, or otherwise prove that $\begin{pmatrix} 2n \\ n \end{pmatrix}$ *n* \setminus is divisible by $n + 1$.
- 2. Let *n* be a positive integer.
	- (a) Prove that 2 $\int 3n + 1$ *n* \setminus *−* $\left(\begin{array}{c} 3n+1\\n+1 \end{array}\right) = \frac{(3n+1)!}{[(n+A)!][(2n+B)!]}$. Here *A, B* are appropriate positive integers whose respective values you have to determine explicitly.
	- (b) Hence, or otherwise prove that $\begin{pmatrix} 3n+1 \\ 3n \end{pmatrix}$ *n*) is divisible by $n + 1$, and $\left(\begin{array}{c} 3n + 1 \\ n + 1 \end{array}\right)$ is divisible by $2n + 1$.

3.[▲] Let *a* be a real number, *n* be a positive integer, and $f(x)$ be the polynomial given by $f(x) = (1 + x + ax^2)^{6n}$. Denote the coefficients of the *x*-term, the *x*²-term, and the *x*³-term in the polynomial $f(x)$ by k_1, k_2, k_3 respectively.

- (a) Express k_1, k_2, k_3 in terms of *a*.
- (b) Suppose k_1, k_2, k_3 are in arithmetic progression.
	- i. Prove that $a = \frac{An^2 + Bn + C}{9(2n 1)}$. Here *A, B, C* are some appropriate integers whose values you have to determine explicitly
	- ii. Further suppose $a \geq 0$. What is the value of *n*? Justify your answer.

4.[♦] Let *m*, *n* be positive integers. Suppose *m* > *n*. Let *f*(*x*) be the polynomial given by *f*(*x*) = $(1+x)^{mn}(1-x)^{m(n-1)}$. Prove that the coefficients of the *x*-term and the x^2 -term are equal to each other iff $m = 2n + 1$.

- 5. Apply mathematical induction to prove the statements below:
	- $\binom{a}{b}$ *k*=2 (*n* 2 $) =$ $(n+1)$ 3 \setminus *for any integer greater than* 1*.*
	- (b) $n! < \left(\frac{n}{2}\right)$ 2)*n for any integer greater than* 5*.*
	- $(c) \frac{2^{2n}}{2}$ $\frac{1}{2n}$ < (2*n n* \setminus $\frac{2^{2n}}{4}$ 4 *for any integer greater than* 7*.*
- 6. Prove the statement below:
	- Let a, n be positive integers. Suppose $n \ge a$. Then $(2a-1)^n + (2a)^n < (2a+1)^n$.

Remark. There is no need to apply mathematical induction.

7.^{\diamond} Let *m* be a positive integer. Prove that $\sum_{n=1}^{\infty}$ *k*=0 $2^{2k} \binom{2m}{2k}$ 2*k* \setminus $=\frac{A^m + B}{2}$ $\frac{1}{2}$. Here *A, B* are some positive integers whose respective values you have to determine explicitly.

- 8.*♢* Prove the statement below, which is known as **Vandemonde's Theorem**:
	- Let p, q, r be non-negative integers. Suppose $r \leq p + q$. Then $\sum_{r=1}^{r}$ *k*=0 (*p k* $\sqrt{4}$ *r − k* $) =$ $(p+q)$ *r* \setminus *.*

(*Hint.* Note that $(1+x)^{p+q} = (1+x)^p (1+x)^q$ as polynomials.)

9.*♢* Let *n* be a positive integer. Find the respective values of the numbers below. Leave your answer in terms of *n*.

(a)
$$
\sum_{k=0}^{n} \binom{n}{k}^2.
$$
 (b)
$$
\sum_{k=0}^{n} (-1)^k \binom{n}{k}^2.
$$

10. Let *n* be a positive integer, and $f : \mathbb{R} \longrightarrow \mathbb{R}$ by $f(x) = (1+x)^n$ for any $x \in \mathbb{R}$.

- (a) Suppose $n \geq 3$. By differentiating f , or otherwise, prove that $\sum_{n=1}^{n}$ *k*=0 *k*(*k−*1)(*k−*2) 3 *k* (*n k* $=\frac{n(n-1)(n-A)\cdot B^{n-C}}{2n}$ $\frac{2n}{3^n}$. Here A, B, C are some appropriate integers whose respective values you have to determine explicitly.
- (b) By integrating *f*, or otherwise, prove that $\sum_{n=1}^{n}$ *k*=0 2^k $(k+3)(k+2)(k+1)$ (*n k* $\bigg) = \frac{A^{n+3} - 1 - 2(n+B)^2}{C(n+3)(n+2)(n+1)}.$

Here A, B, C are some appropriate integers whose respective values you have to determine explicitly.

- 11. (a) Let *n, m* be positive integers.
	- i.^{\diamond} Verify the equality $x[(1+x)^n + (1+x)^{n+1} + \cdots + (1+x)^{n+m}] = (1+x)^{n+m+1} (1+x)^n$ for polynomials. ii.[♣] Let *k* be a positive integer. Write $c_{n,m,k} = \begin{pmatrix} n \\ k \end{pmatrix}$ *k* $+$ $(n+1)$ *k* \setminus $^{+}$ $(n+2)$ *k* \setminus $+ \cdots +$ $(n + m)$ *k* \setminus .
		- A. Suppose $k < n$. What is the value of $c_{n,m,k}$? Leave your answer in terms of n, m, k where appropriate.
		- B. Suppose $n \leq k \leq n+m$. What is the value of $c_{n,m,k}$? Leave your answer in terms of n, m, k where appropriate.
	- (b) Let *m* be a positive integer.
		- i.*♣* Applying the results in the previous parts, or otherwise, prove that

$$
\sum_{r=5}^{m+4} r(r-1)(r-2)(r-3) = 24\left(\begin{array}{c} m+5\\ 5 \end{array}\right) - 1.
$$

ii. Hence, or otherwise, find the value of $\sum_{n=1}^{m+4}$ *r*=0 $r(r-1)(r-2)(r-3)$. Leave your answer in terms of *m* where appropriate.

- 12. For each $n \in \mathbb{N} \setminus \{0, 1\}$, define $a_n = \sqrt[n]{n} 1$.
	- (a) Prove that $a_n \geq 0$ for any $n \in \mathbb{N} \setminus \{0, 1\}$.
	- (b) By applying the Binomial Theorem to the expression $(1 + a_n)^n$, prove that $a_n \leq$ √ 2 $\frac{2}{n-1}$ for any $n \in \mathbb{N} \setminus \{0, 1\}.$

Remark. The inequalities described here constitute the key step in the argument for the statement ' $\lim_{n\to\infty} \sqrt[n]{n} = 1$ '.

13. *Familiarity with the calculus of one variable is assumed in this question.*

Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be the function defined by $f(x) = e^{x^2/2}$ for any $x \in \mathbb{R}$.

Take for granted that the exponential function exp : R *−→* R *is differentiable on* R*, and every polynomial function is differentiable on* R*.*

- (a) Verify that $f'(x) = xf(x)$ for any $x \in \mathbb{R}$.
- (b)*♣* Apply mathematical induction to prove the statement (*♯*):

(\sharp) Let $n \in \mathbb{N} \setminus \{0\}$. The function f is $(n+1)$ *-times differentiable, and for any* $x \in \mathbb{R}$,

$$
f^{(n+1)}(x) = xf^{(n)}(x) + nf^{(n-1)}(x).
$$

- (c)*♡* Apply mathematical induction to prove the statement (*♭*):
	- (b) Let $n \in \mathbb{N} \setminus \{0\}$. There exists some polynomial function P_n of degree *n* and with leading coefficient 1 such *that* $f^{(n)}(x) = P_n(x)e^{x^2/2}$ for any $x \in \mathbb{R}$.

(d)⁶ Prove that
$$
f^{(n)}(0) = \begin{cases} 0 & \text{if } n \text{ is odd} \\ \frac{n!}{2^{n/2}[(n/2)!]} & \text{if } n \text{ is even} \end{cases}
$$

14. *Familiarity with the calculus of one variable is assumed in this question.*

Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be the function defined by $f(x) = \frac{1}{1+x^2}$ for any $x \in \mathbb{R}$.

Take for granted that f is smooth on R*.*

(a) i. By applying mathematical induction, or Leibniz's Rule, prove that for any $n \in \mathbb{N}$, for any $x \in \mathbb{R}$,

 $(1+x^2)f^{(n+2)}(x) + 2(n+2)xf^{(n+1)}(x) + (n+2)(n+1)f^{(n)}(x) = 0.$

- ii. Determine the value of $f^{(n)}(0)$ for each *n*.
- (b) For each $n \in \mathbb{N}$, define the function $g_n : \mathbb{R} \longrightarrow \mathbb{R}$ by $g_n(x) = (1+x^2)^{n+1} f^{(n)}(x)$ for any $x \in \mathbb{R}$. Take for granted *that* g_n *is smooth on* \mathbb{R} *for each n*.
	- i. Applying the results above, or otherwise, prove that for any $n \in \mathbb{N}$, for any $x \in \mathbb{R}$,

 $g_{n+2}(x) + 2(n+2)xg_{n+1}(x) + (n+2)(n+1)(1+x^2)g_n(x) = 0.$

ii.[◇] Hence, or otherwise, deduce that for any $n \in \mathbb{N}$, for any $x \in \mathbb{R}$,

$$
(1+x^2)g''_n(x) - 2n x g'_n(x) + n(n+1)g_n(x) = 0.
$$

- iii.[●] Applying mathematical induction, or otherwise, prove that for each $n \in \mathbb{N}$, q_n is a polynomial function of degree *n* and with leading coefficient $(-1)^n[(n+1)!]$.
- 15. *Familiarity with the calculus of one variable is assumed in this question.*

For each $n \in \mathbb{N}$, define the function $f_n : \mathbb{R} \longrightarrow \mathbb{R}$ by $f_n(x) = x^n |x|$ for any $x \in \mathbb{R}$.

Take for granted that f_n *is smooth at every point in* $\mathbb{R}\setminus\{0\}$ *. (The point in this question is the behaviour of the function* f_n *at and near* 0*.*)

(a) i. Verify that f_0 is continuous at 0.

ii. Verify that f_0 is not differentiable at 0.

- (b) Verify that for any $n \in \mathbb{N} \setminus \{0\}$, the function f_n is differentiable at 0, and $f'_n(0) = 0$.
- (c) Verify that for each $n \in \mathbb{N} \setminus \{0\}$, $f'_{n}(x) = (n+1)f_{n-1}(x)$ for any $x \in \mathbb{R}$.
- (d)^{◇} By applying the Telescopic Method, or otherwise, prove that for any $n \in \mathbb{N}\setminus\{0\}$, for each $k = 1, 2, \cdots, n$, there exists some $A_{n,k} \in \mathbb{R}$ such that $f_n^{(k)}(x) = A_{n,k} f_{n-k}(x)$ for any $x \in \mathbb{R} \setminus \{0\}$.
- (e)[☆] Prove that for any $n \in \mathbb{N}\backslash\{0\}$, the function f_n is *n*-times continuously differentiable at 0, and $f_n^{(k)}(0) = 0$ for each $k = 1, 2, \cdots, n$.

Remark. Proceed as described here:

Let $n \in \mathbb{N} \setminus \{0\}$ *. Denote by* $Q(k)$ *the proposition below:*

 f_n *is k*-times continuously differentiable at 0, and $f_n^{(k)}(0) = 0$.

First verify that $Q(0)$ is true. Next, verify that for each $k = 1, 2, \dots, n-1$, if $Q(k)$ is true then $Q(k + 1)$ is *true.*

It will then follow (from a repeated application of modus ponens and hypothetical syllogism) that each of $Q(0), Q(1), Q(2), \cdots, Q(n)$ are all true.

Such an argument is referred to as **finite induction**.

(f) Prove that f_n is not $(n + 1)$ -times differentiable at 0 for each $n \in \mathbb{N} \setminus \{0\}$.

16. *Familiarity with the calculus of one variable is assumed in this question.* For each $n \in \mathbb{N}$, define the function $f_n : \mathbb{R} \longrightarrow \mathbb{R}$ by

$$
f_n(x) = \begin{cases} -x^n \ln(x^2) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}
$$

Take for granted the result lim $\lim_{x\to 0^{\pm}} f_0(x) = +\infty$ *. Also take for granted the result that* f_n *is smooth at every point of* $\mathbb{R}\setminus\{0\}$ *. (The point in this question is the behaviour of the function* f_n *at and near* 0*.*)

- (a) By applying L'Hôpital's Rule, or otherwise, verify that lim $\lim_{x\to 0^{\pm}} f_n(x) = 0$ respectively for each $n \in \mathbb{N} \setminus \{0\}$. (There is no need to apply mathematical induction.)
- (b) Prove that f_1 is continuous at 0 but not differentiable at 0.
- (c) Suppose $n \in \mathbb{N} \setminus \{0, 1\}$. Prove the statements below:
	- i. f_n is differentiable at 0, and $f'_n(0) = 0$.
	- ii. $f'_n(x) = nf_{n-1}(x) 2x^{n-1}$ for any *x* ∈ **R**.
	- iii. *fⁿ is continuously differentiable at* 0*.*
- (d)[●] By applying the Telescopic Method, or otherwise, prove that for each $n \in \mathbb{N}\setminus\{0,1\}$, for each $k = 1, 2, \cdots, n-1$, there exists some $A_{n,k} \in \mathbb{R}$ such that $f_n^{(k)}(x) = \frac{n!}{(n-k)!} f_{n-k}(x) - A_{n,k} x^{n-k}$ for any $x \in \mathbb{R} \setminus \{0\}.$
- (e)*♣* Hence, or otherwise, deduce that for each *n ∈* N*\{*0*,* 1*}*, the function *fⁿ* is (*n−*1)-times continuously differentiable at 0, and $f_n^{(k)}(0) = 0$ for each $k = 1, 2, 3, \dots, n - 1$.
- (f) Prove that f_n is not *n*-times differentiable at 0 for each $n \in \mathbb{N} \setminus \{0, 1\}$.
- 17. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a function. Suppose that $f(x + y) = f(x)f(y)$ for any $x, y \in \mathbb{R}$. Further suppose that *f* is not a constant function.
	- (a) Prove that $f(0) = 1$.
	- (b)^{\diamond} Prove that $f(x) \geq 0$ for any $x \in \mathbb{R}$.
	- (c) Prove that for any $x \in \mathbb{R}$, $f(x) > 0$ and $f(-x) > 0$ and $f(-x) = \frac{1}{f(x)}$.
	- (d) Prove that $f(nx) = (f(x))^n$ for any $n \in \mathbb{N}$ for any $x \in \mathbb{R}$.
	- (e) Prove that $f(mx) = (f(x))^m$ for any $m \in \mathbb{Z}$ for any $x \in \mathbb{R}$.
	- (f) Prove that $f(rx) = (f(x))^r$ for any $r \in \mathbb{Q}$, for any $x \in \mathbb{R}$.
	- (g) *Familiarity with the calculus of one variable is assumed in this part. Take for granted the validity of the results below:*
		- For any $u \in \mathbb{R}$, there exists some infinite sequence of rational numbers $\{s_n\}_{n=0}^{\infty}$ such that $\lim_{n \to \infty} s_n = u$.

Now suppose *f* is continuous on R.

Prove that there exists some positive real number *c* such that $f(x) = c^x$ for any $x \in \mathbb{R}$.

18. *Familiarity with the calculus of one variable is assumed in this question.*

Let $f : [0, +\infty) \longrightarrow \mathbb{R}$ be a continuous function. Suppose that for any $x \in [0, +\infty)$,

$$
f(x) \ge 0
$$
 and $f(x) \ge 1 + \int_0^x 2uf(u)du$.

(a)^{**♣**} Apply mathematical induction to prove that for any *n* ∈ **N**, $f(x) \ge \sum_{n=1}^{n}$ *j*=0 x^{2j} $\frac{y}{j!}$ for any $x \in [0, +\infty)$.

(b) Prove that $f(\sqrt{e}) \geq e^e$.