1. **Solution.**

- (a) Let $n \in \mathbb{N}$, and $k \in \mathbb{Z}$.
	- i. (Case 1.) Suppose $0 \leq k \leq n$. Then $\left(\begin{array}{c} n \\ k \end{array}\right)$ $\Big) = \frac{n!}{k! \cdot [(n-k)!]} = \frac{n!}{[n-(n-k)!] \cdot [(n-k)!]} = \frac{n!}{[(n-k)!] \cdot [n-(n-k)!]} = \left(n \frac{n!}{n-k!} \right)$ *n − k* . • (Case 2.) Suppose $k < 0$. Then $n - k > n$. Therefore $\begin{pmatrix} n \\ k \end{pmatrix}$ $= 0 = \left(\begin{array}{c} n \\ n-k \end{array}\right)$. • (Case 3.) Suppose $k > n$. Then $n - k < 0$. Therefore $\begin{pmatrix} n \\ k \end{pmatrix}$ $= 0 = \left(\begin{array}{c} n \\ n-k \end{array}\right)$.
	- ii. (Case 1.) Suppose $0 \le k \le n-1$. Then

$$
\binom{n}{k} + \binom{n}{k+1} = \frac{n!}{k! \cdot (n-k)!} + \frac{n!}{(k+1)! \cdot (n-k-1)!}
$$

=
$$
\frac{n!}{k! \cdot (n-k-1)!} \cdot \binom{1}{n-k} + \frac{1}{k+1}
$$

=
$$
\frac{n!}{k! \cdot (n-k-1)!} \cdot \frac{n+1}{(n-k)(k+1)}
$$

=
$$
\frac{(n+1)!}{(k+1)! \cdot (n-k)!} = \frac{(n+1)!}{(k+1)! \cdot [(n+1) - (k+1)]!} = \binom{n+1}{k+1}.
$$

- (Case 2.) Suppose *k < −*1. Then *k* + 1 *<* 0. *n k* $=$ $\begin{pmatrix} n \\ k+1 \end{pmatrix} = 0 = \begin{pmatrix} n+1 \\ k+1 \end{pmatrix}$. Therefore $\begin{pmatrix} n \\ k \end{pmatrix}$ $+$ $\begin{pmatrix} n \\ k+1 \end{pmatrix} =$ $\binom{n+1}{k+1}$.
- (Case 3.) Suppose *k* = *−*1. Then *k* + 1 = 0. *n k* $= 0$ and $\begin{pmatrix} n \\ k+1 \end{pmatrix} = 1 = \begin{pmatrix} n+1 \\ k+1 \end{pmatrix}$. Therefore $\begin{pmatrix} n \\ k \end{pmatrix}$ $+$ $\begin{pmatrix} n \\ k+1 \end{pmatrix} =$ $\binom{n+1}{k+1}$. • (Case 4.) Suppose *k ≥ n*. Then *n − k ≤* 0. Also, *n − k −* 1 *≤* 0

$$
\begin{pmatrix}\nn \\
k\n\end{pmatrix} +\n\begin{pmatrix}\nn \\
k+1\n\end{pmatrix} =\n\begin{pmatrix}\nn \\
n-k\n\end{pmatrix} +\n\begin{pmatrix}\nn \\
n-k-1\n\end{pmatrix}
$$
\n
$$
= \n\begin{pmatrix}\nn \\
(n-k-1) + 1\n\end{pmatrix} +\n\begin{pmatrix}\nn \\
n-k-1\n\end{pmatrix}
$$
\n
$$
= \n\begin{pmatrix}\nn+1 \\
(n-k-1) + 1\n\end{pmatrix} =\n\begin{pmatrix}\nn+1 \\
(n+1) - (k+1)\n\end{pmatrix} =\n\begin{pmatrix}\nn+1 \\
k+1\n\end{pmatrix}
$$

(b) i. Suppose $n, m \in \mathbb{N}$.

For each $j = 1, 2, \cdots, m$, we have $\binom{n+j+1}{j}$ *j* $\overline{}$ *−* $(n+j)$ *j −* 1 $\overline{}$ = $(n+j)$ *j* \setminus . Then

$$
\sum_{j=0}^{m} {n+j \choose j} = {n \choose 0} + \sum_{j=1}^{m} {n+j \choose j}
$$

$$
= {n \choose 0} + \sum_{j=1}^{m} {n+j+1 \choose j} - {n+j \choose j-1}
$$

$$
= {n \choose 0} + {n+m+1 \choose m} - {n+1 \choose 1-1}
$$

$$
= {n+m+1 \choose m}
$$

ii. Suppose $n, m \in \mathbb{N}$.

For each $j = 1, 2, \cdots, m$, we have $\binom{n+j+1}{n+1}$ – $\left(\begin{array}{c}n+j\\n+1\end{array}\right)$ = $\int n+j$ *n* \setminus Then

$$
\sum_{j=0}^{m} {n+j \choose n} = {n \choose n} + \sum_{j=1}^{m} {n+j \choose n}
$$

$$
= {n \choose n} + \sum_{j=1}^{m} ({n+j+1 \choose n+1} - {n+j \choose n+1})
$$

$$
= {n \choose n} + ({n+m+1 \choose n+1} - {n+1 \choose n+1})
$$

$$
= {n+m+1 \choose n+1}
$$

2. **Solution.**

Let *n* be a positive integer.

(a) Suppose *r* is an integer amongst $0, 1, \dots, n$.

Then
$$
\binom{n+1}{r+1} / \binom{n+1}{r} = \frac{(n+1)!}{[(r+1)!] \{[(n+1)-r-1]!\}} \cdot \frac{(r)! \{[(n+1)-r]!\}}{(n+1)!} = \dots = \frac{n+1-r}{r+1}.
$$

(b) i.

$$
\sum_{k=0}^{n} (k+1) \cdot \binom{n+1}{k+1} / \binom{n+1}{k} = \sum_{k=0}^{n} (k+1) \cdot \frac{n+1-k}{k+1} = \sum_{k=0}^{n} (n+1-k)
$$

$$
= \sum_{k=0}^{n} (n+1) - \sum_{k=0}^{n} k
$$

$$
= (n+1)^2 - \frac{(n+1)n}{2} = \frac{n^2 + 3n + 2}{2}
$$

ii.

$$
\prod_{k=0}^{n} \left(\binom{n+1}{k+1} + \binom{n+1}{k} \right) = \prod_{k=0}^{n} \left[\left(\binom{n+1}{k+1} / \binom{n+1}{k} + 1 \right) \cdot \binom{n+1}{k} \right]
$$
\n
$$
= \prod_{k=0}^{n} \left[\left(\frac{n+1-k}{k+1} + 1 \right) \cdot \binom{n+1}{k} \right]
$$
\n
$$
= \prod_{k=0}^{n} \left[\frac{n+2}{k+1} \cdot \binom{n+1}{k} \right]
$$
\n
$$
= \left[\prod_{k=0}^{n} (n+2) \right] \left[\prod_{k=0}^{n} \frac{1}{k+1} \right] \cdot \left(\prod_{k=0}^{n} \binom{n+1}{k} \right)
$$
\n
$$
= \frac{(n+2)^{n+1}}{[(n+1)!]} \cdot \left(\prod_{k=0}^{n} \binom{n+1}{k} \right)
$$

3. **Solution.**

Denote by $P(n)$ the following proposition:

$$
(1+x)^n = {n \choose 0} + {n \choose 1}x + {n \choose 2}x^2 + \dots + {n \choose k}x^k + \dots + {n \choose n-1}x^{n-1} + {n \choose n}x^n
$$
 as polynomials.

- Note that $(1+x)^0 = 1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $\boldsymbol{0}$ \setminus as polynomials. Hence $P(0)$ is true.
- Let $m \in \mathbb{N}$. Suppose $P(m)$ is true. Then

$$
(1+x)^m = {m \choose 0} + {m \choose 1}x + {m \choose 2}x^2 + \dots + {m \choose k}x^k + \dots + {m \choose m-1}x^{m-1} + {m \choose m}x^m
$$

as polynomials.

We verify that $P(m + 1)$ is true:

As polynomials,

$$
(1+x)^{m+1} = (1+x)(1+x)^m
$$

\n
$$
= (1+x)\left(\binom{m}{0} + \binom{m}{1}x + \binom{m}{2}x^2 + \cdots + \binom{m}{k}x^{m-k}\right)
$$

\n
$$
= \left(\binom{m}{0} + \binom{m}{1}x + \binom{m}{2}x^2 + \cdots + \binom{m}{k}x^k + \binom{m}{k+1}x^{k+1} + \cdots + \binom{m}{m}x^m\right)
$$

\n
$$
+ \left(\binom{m}{0}x + \binom{m}{1}x^2 + \cdots + \binom{m}{k}x^{k+1} + \cdots + \binom{m}{m-1}x^{m+1} + \binom{m}{k+1}x^{k+1} + \cdots + \binom{m+1}{k+1}x^{k+1} + \cdots + \binom{m+1}{k+1}x^{k+1} + \cdots + \binom{m+1}{m}x^{m+1}
$$

\n
$$
+ \cdots + \binom{m+1}{m}x^m + \binom{m+1}{m+1}x^{m+1}
$$

It follows that $P(m+1)$ is true.

By the Principle of Mathematical Induction, $P(n)$ is true for any $n \in \mathbb{N}$.

4. (a) **Solution.**

Let *n* be a positive integer, and $f(x)$ be the polynomial $f(x) = (1 + x)^n$.

Note that
$$
f(x) = \sum_{k=0}^{n} {n \choose k} x^{k}
$$
 as polynomials.
\ni. $\sum_{k=0}^{n} {n \choose k} = \sum_{k=0}^{n} {n \choose k} \cdot 1^{k} = f(1) = (1+1)^{n} = 2^{n}$.
\nii. $\sum_{k=0}^{n} (-1)^{k} {n \choose k} = f(-1) = (1-1)^{n} = 0$.
\niii. $\sum_{k=0}^{n} \frac{1}{2^{k}} {n \choose k} = f(\frac{1}{2}) = \left(1 + \frac{1}{2}\right)^{n} = \frac{3^{n}}{2^{n}}$.
\niv. $\sum_{k=0}^{n} \frac{(-1)^{k} \cdot 3^{k-1}}{5^{k+1}} {n \choose k} = \frac{1}{15} \sum_{k=0}^{n} \frac{(-1)^{k} \cdot 3^{k}}{5^{k}} {n \choose k} = \frac{1}{15} f(-\frac{3}{5}) = \frac{1}{15} \left(1 - \frac{3}{5}\right)^{n} = \frac{2^{n}}{15 \cdot 5^{n}}$.

(b) **Solution.**

Let *m* be a positive integer. Then $2m$ is a positive integer. Let $g(x)$ be the polynomial $g(x) = (1+x)^{2m}$.

Note that
$$
g(x) = \sum_{k=0}^{2m} {2m \choose k} x^k
$$
 as polynomials.
\ni. $\sum_{k=0}^{2m} {2m \choose k} = g(1) = 2^{2m}$.
\nii. $\sum_{k=0}^{2m} (-1)^k {2m \choose k} = g(-1) = 0$.
\niii.

$$
\sum_{k=0}^{m} \binom{2m}{2k} = \sum_{j=0}^{2m} \frac{1}{2} \left(\binom{2m}{j} + (-1)^j \binom{2m}{j} \right)
$$

=
$$
\frac{1}{2} \left(\sum_{j=0}^{2m} \binom{2m}{j} + \sum_{j=0}^{2m} (-1)^j \binom{2m}{j} \right) = \frac{1}{2} (2^{2m} + 0) = 2^{2m-1}
$$

iv.

$$
\sum_{k=0}^{m-1} \binom{2m}{2k+1} = \sum_{j=0}^{2m} \frac{1}{2} \left(\binom{2m}{j} - (-1)^j \binom{2m}{j} \right)
$$

=
$$
\frac{1}{2} \left(\sum_{j=0}^{2m} \binom{2m}{j} - \sum_{j=0}^{2m} (-1)^j \binom{2m}{j} \right) = \frac{1}{2} (2^{2m} - 0) = 2^{2m-1}
$$

(c) *Hint.* Note that $4p$ is a positive integer. Define the polynomial $h(z) = (1+z)^{4p}$. The results in the previous parts give

$$
\sum_{k=0}^{4p} \binom{4p}{k} = 2^{4p}, \qquad \sum_{k=0}^{4p} (-1)^k \binom{4p}{k} = 0, \qquad \sum_{k=0}^{2p} \binom{4p}{2k} = 2^{4p-1}, \qquad \sum_{k=0}^{2p-1} \binom{4p}{2k+1} = 2^{4p-1}.
$$

Further obtain

$$
(-1)^p \cdot 2^{2p} = h(i) = \sum_{j=0}^{2p} (-1)^j \binom{4p}{2j} + i \sum_{j=0}^{2p-1} (-1)^j \binom{4p}{2j+1}
$$

Make use of these above to the answers for the respective parts. **Answer.**

.

.

i.
$$
(-1)^p \cdot 2^{2p-1}
$$
.
\nii. 0.
\niii. $2^{4p-2} + (-1)^p \cdot 2^{2p-1}$
\niv. $2^{4p-2} - (-1)^p \cdot 2^{2p-1}$
\nv. 2^{4p-2} .
\nvi. 2^{4p-2} .

5. **Solution.**

- (a) Let $n \in \mathbb{N} \setminus \{0\}$, and $k \in \mathbb{Z}$.
	- (Case 1.) Suppose $0 < k \leq n$. Then

$$
k \cdot {n \choose k} = k \cdot \frac{n!}{k! \cdot (n-k)!} = \frac{n!}{(k-1)! \cdot (n-k)!} = n \cdot \frac{(n-1)!}{(k-1)! \cdot [(n-1) - (k-1)]!} = n \cdot {n-1 \choose k-1}.
$$

• (Case 2.) Suppose $k \leq 0$ or $k > n$. Then $k \cdot \binom{n}{k}$ *k* $= 0 = n \cdot$ $\binom{n-1}{n}$ *k −* 1 \setminus .

Hence in any case, $k \cdot \binom{n}{k}$ *k* $= n \cdot$ $\binom{n-1}{n}$ *k −* 1 \setminus .

(b) Let *n* be a positive integer.

i.
$$
\sum_{k=0}^{n} k {n \choose k} = \sum_{k=1}^{n} k {n \choose k} = \sum_{k=1}^{n} n {n-1 \choose k-1} = n \sum_{k=1}^{n} {n-1 \choose k-1} = n \sum_{j=0}^{n-1} {n-1 \choose j} = n \cdot 2^{n-1}.
$$

Alternative argument. Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ by $f(x) = (1 + x)^n$ for any $x \in \mathbb{R}$. *f* is smooth on \mathbb{R} , and for any $x \in \mathbb{R}$, we have

$$
n(1+x)^{n-1} = f'(x) = \sum_{k=1}^{n} k \binom{n}{k} x^{k-1}
$$

.

Then $\sum_{n=1}^n$ *k*=0 $k\left(\begin{array}{c}n\\ k\end{array}\right)$ *k* $) = f'(1) = n \cdot 2^{n-1}.$

- ii. We have $n \leq 1$ or $n \geq 2$.
	- (Case 1.) Suppose $n = 1$. Then We have $\sum_{n=1}^n$ *k*=0 $(-1)^{k+1}k\binom{n}{k}$ *k* $=$ $\sum_{ }^{1}$ *k*=0 $(-1)^{k+1}k\binom{n}{k}$ *k* $= (-1)^{1+1} \cdot 1$ $\begin{pmatrix} 1 \end{pmatrix}$ 1 \setminus = 1.

• (Case 2.) Suppose $n \geq 2$. Then we have

$$
\sum_{k=0}^{n} (-1)^{k+1} k \binom{n}{k} = \sum_{k=1}^{n} (-1)^{k+1} k \binom{n}{k}
$$

$$
= \sum_{k=1}^{n} (-1)^{k+1} n \binom{n-1}{k-1}
$$

$$
= n \sum_{k=1}^{n} (-1)^{k+1} \binom{n-1}{k-1}
$$

$$
= n \sum_{j=0}^{n-1} (-1)^{j+2} \binom{n-1}{j}
$$

$$
= n \sum_{j=0}^{n-1} (-1)^{j} \binom{n-1}{j} = n \cdot 0 = 0
$$

iii. We have $n \geq 2$ or $n \leq 1$.

• (Case 1.) Suppose $n \geq 2$. Then

$$
\sum_{k=0}^{n} k(k-1) \binom{n}{k} = \sum_{k=2}^{n} k(k-1) \binom{n}{k}
$$

=
$$
\sum_{k=2}^{n} n(k-1) \binom{n-1}{k-1}
$$

=
$$
\sum_{k=2}^{n} n(n-1) \binom{n-2}{k-2}
$$

=
$$
n(n-1) \sum_{k=2}^{n} \binom{n-2}{k-2}
$$

=
$$
n(n-1) \sum_{j=0}^{n-2} \binom{n-2}{j} = n(n-1) \cdot 2^{n-2}
$$

• (Case 2). Suppose $n \leq 1$. Then $\sum_{n=1}^n$ $k=0$ $k(k-1)$ $\binom{n}{k}$ $= 0 = n(n-1) \cdot 2^{n-2}.$ Hence in any case, $\sum_{n=1}^n$ *k*=0 $k(k-1)$ $\binom{n}{k}$ $= n(n-1) \cdot 2^{n-2}.$

iv.

$$
\sum_{k=0}^{n} k^{2} \binom{n}{k} = \sum_{k=0}^{n} [k(k-1) + k] \binom{n}{k}
$$

=
$$
\sum_{k=0}^{n} k(k-1) \binom{n}{k} + \sum_{k=0}^{n} k \binom{n}{k}
$$

=
$$
n(n-1) \cdot 2^{n-2} + n \cdot 2^{n-1} = n(n+1) \cdot 2^{n-2}
$$

(c) Let *m* be a positive integer. Note that $m + 1 > 1$. For each non-negative integer k , we have $(k + 1)$. $\binom{m+1}{k+1} = (m+1) \cdot \binom{m}{k}$ *k* . Therefore $\sqrt{ }$

$$
\frac{1}{k+1} \cdot \binom{m}{k} = \frac{1}{m+1} \cdot \binom{m+1}{k+1}.
$$

$$
\sum_{k=0}^{m} \frac{1}{k+1} \binom{m}{k} = \sum_{k=0}^{m} \frac{1}{m+1} \binom{m+1}{k+1}
$$

=
$$
\frac{1}{m+1} \sum_{k=0}^{m} \binom{m+1}{k+1}
$$

=
$$
\frac{1}{m+1} \sum_{j=1}^{m+1} \binom{m+1}{j}
$$

=
$$
\frac{1}{m+1} \sum_{j=0}^{m+1} \binom{m+1}{j} - 1 = \frac{2^{m+1} - 1}{m+1}
$$

Alternative argument. Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ by $f(x) = (1 + x)^n$ for any $x \in \mathbb{R}$. *f* is continuous on \mathbb{R} , and for any $x \in \mathbb{R}$, we have

$$
\frac{(1+x)^{n+1}-1}{n+1} = \int_0^x f(t)dt = \sum_{k=0}^n \frac{1}{k+1} \binom{n}{k} x^{k+1}.
$$

Then $\sum_{n=1}^n$ *k*=0 1 $k + 1$ *n k* $=$ \int_1^1 0 $f(t)dt = \frac{2^{n+1} - 1}{t}$ $\frac{1}{n+1}$.

ii.

i.

$$
\sum_{k=0}^{m} \frac{(-1)^k}{k+1} \binom{m}{k} = \sum_{k=0}^{m} \frac{(-1)^k}{m+1} \binom{m+1}{k+1}
$$

$$
= \frac{1}{m+1} \sum_{k=0}^{m} (-1)^k \binom{m+1}{k+1}
$$

$$
= \frac{1}{m+1} \sum_{j=1}^{m+1} (-1)^{j-1} \binom{m+1}{j}
$$

$$
= \frac{1}{m+1} \left(-\sum_{j=0}^{m+1} (-1)^j \binom{m+1}{j} + 1 \right) = \frac{1}{m+1}
$$

iii.

$$
\sum_{k=0}^{m} \frac{1}{(k+2)(k+1)} \binom{m}{k} = \sum_{k=0}^{m} \frac{1}{m+1} \cdot \frac{1}{k+2} \binom{m+1}{k+1}
$$

$$
= \sum_{k=0}^{m} \frac{1}{(m+2)(m+1)} \binom{m+2}{k+2}
$$

$$
= \frac{1}{(m+2)(m+1)} \sum_{k=0}^{m} \binom{m+2}{k+2}
$$

$$
= \frac{1}{(m+2)(m+1)} \sum_{j=2}^{m+2} \binom{m+2}{j}
$$

$$
= \frac{1}{(m+2)(m+1)} \sum_{j=0}^{m+2} \binom{m+2}{j} - 1 - (m+2) = \frac{2^{m+2} - m - 3}{(m+2)(m+1)}
$$

6. **Solution.**

Let α be a complex number. Suppose $0 < |\alpha| < 1$.

Define
$$
\beta = \frac{1}{|\alpha|} - 1
$$
. We have $\beta > 0$.

(a) Suppose $n \geq 2$. Then, by Bernoulli's Inequality, $(1 + \beta)^n \geq 1 + n\beta \geq n\beta$. Therefore $|\alpha|^n = \frac{1}{(1 + \beta)^n}$ $\frac{1}{(1+\beta)^n} \leq \frac{1}{n\beta}.$

(b) Suppose $n \ge 3$. Then $(1 + \beta)^n = 1 + n\beta + \frac{n(n-1)}{2}$ $\frac{(-1)}{2}\beta^2 + \cdots \cdots \cdots$ finitely many non-negative terms $\geq \frac{n(n-1)}{2}$ $\frac{(n-1)}{2} \beta^2$. Therefore $n|\alpha|^n = \frac{n}{(1-\alpha)^n}$ $\frac{n}{(1+\beta)^n} \leq \frac{2}{(n-\beta)^n}$ $\frac{2}{(n-1)\beta^2} = \frac{2}{[n/2 + (n/2))}$ $\frac{2}{[n/2 + (n/2 - 1)]\beta^2} \le \frac{2}{(n/2)}$ $\frac{2}{(n/2)\beta^2} = \frac{4}{n\beta}$ $rac{1}{n\beta^2}$.

(c) Suppose $n \geq 4$. Then

$$
(1+\beta)^n = 1 + n\beta + \frac{n(n-1)}{2}\beta^2 + \frac{n(n-1)(n-2)}{6}\beta^3 + \underbrace{\dots \dots \dots}_{\text{finitely many non-negative terms}} \ge \frac{n(n-1)(n-2)}{6}\beta^3.
$$

Therefore

$$
n^2|\alpha|^n=\frac{n^2}{(1+\beta)^n}\leq \frac{6n}{(n-1)(n-2)\beta^3}=\frac{6n}{[n/2+(n/2-1)][n/3+(2n/3-2)]\beta^3}\leq \frac{6n}{(n/2)(n/3)\beta^3}=\frac{36}{n\beta^3}.
$$

(d) *Hint.* Generalize what you see in part (b) and part (c).

 $7. -$

8. **Answer.**

 (a) — (b) i. $f'(x) = \begin{cases} 0 & \text{if } x < 0 \\ -2x^{-1/x} & \text{if } x > 0 \end{cases}$ $x^{-2}e^{-1/x}$ if $x > 0$. ii. — iii.

(c) i. *Hint.* Apply mathematical induction to the proposition $S(n)$ below:

• There exists some polynomial function P_n such that

$$
f^{(n)}(x) = \begin{cases} 0 & \text{if } x < 0\\ P_n(1/x)e^{-1/x} & \text{if } x > 0 \end{cases}
$$

.

ii. *Hint.* Apply mathematical induction to the proposition $T(n)$ below:

• *f* is *n*-times differentiable at 0 and $f^{(n)}(0) = 0$.

Be careful: that *f* is *n*-times differentiable at 0 for each specific *n* is something which needs being argued for. It should not be taken for granted, even though it is apparent by the result of the previous part that *f* is smooth at every point of R other than 0.

Remark. The Taylor series $T_{f,0}(x)$ of the function *f* about the point 0 is given by the expression $\sum_{n=0}^{\infty} 0 \cdot x^n$. *n*=0

But *f* is not the zero function; in fact, for any $\delta > 0$, we have $f(\delta/2) \neq 0$. Therefore *f* fails to be equal to the constant zero function on $(0, \delta)$,

9. **Solution.**

Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a function. Suppose that $f(x + y) = f(x) + f(y)$ for any $x, y \in \mathbb{R}$.

- (a) We have $f(0) = f(0+0) = f(0) + f(0)$. Then $f(0) = 0$.
- (b) Let $x \in \mathbb{R}$. Note that $-x \in \mathbb{R}$. We have $f(x) + f(-x) = f(x + (-x)) = f(0) = 0$. Then $f(-x) = -f(x)$.
- (c) Denote by $P(n)$ the proposition $f(n) = nf(1)$.
	- We have $f(0) = 0 = 0 \cdot f(1)$. Then $P(1)$ is true.
	- Let $k \in \mathbb{N}$. Suppose $P(k)$ is true. Then $f(k) = kf(1)$. We verify that $P(k + 1)$ is true: We have $f(k + 1) = f(k) + f(1) = kf(1) + f(1) = (k + 1)f(1)$. Hence $P(k+1)$ is true.

By the Principle of Mathematical Induction, $P(n)$ is true for any $n \in \mathbb{N}$.

- (d) Let $m \in \mathbb{Z}$.
	- Suppose $m \geq 0$. Then $m \in \mathbb{N}$. We have $f(m) = mf(1)$.
	- Suppose *m <* 0. Then *−m >* 0. We have $-f(m) = f(-m) = (-m) \cdot f(1) = -mf(1)$. Then $f(m) = mf(1)$.

Hence, in any case, we have $f(m) = mf(1)$.

- (e) Let $r \in \mathbb{Q}$. There exist some $m, n \in \mathbb{Z}$ such that $n \neq 0$ and $m = nr$. Now $mf(1) = f(m) = f(nr) = nf(r)$. Then $f(r) = \frac{m}{n}f(1) = rf(1)$.
- (f) Now further suppose that *f* is continuous on R. Let $u \in \mathbb{R}$. There exists some infinite sequence of rational numbers $\{s_n\}_{n=0}^{\infty}$ such that $\lim_{n\to\infty} s_n = u$.

For each $n \in \mathbb{N}$, we have $f(s_n) = f(1)s_n$. Then, by continuity, we have $f(u) = f\left(\lim_{n \to \infty} s_n\right) = \lim_{n \to \infty} f(s_n) = \lim_{n \to \infty} f(1)s_n = f(1)u$.