
MATH1050 Exercise 5 (Answers and selected solution)

1. Solution.

(a) Let n ∈ N, and k ∈ Z.
i. • (Case 1.) Suppose 0 ≤ k ≤ n.

Then
( n

k

)
=

n!

k! · [(n− k)!]
=

n!

[n− (n− k)!] · [(n− k)!]
=

n!

[(n− k)!] · [n− (n− k)!]
=
(

n
n− k

)
.

• (Case 2.) Suppose k < 0. Then n− k > n. Therefore
( n

k

)
= 0 =

( n

n− k

)
.

• (Case 3.) Suppose k > n. Then n− k < 0. Therefore
( n

k

)
= 0 =

( n

n− k

)
.

ii. • (Case 1.) Suppose 0 ≤ k ≤ n− 1. Then( n

k

)
+
( n

k + 1

)
=

n!

k! · (n− k)!
+

n!

(k + 1)! · (n− k − 1)!

=
n!

k! · (n− k − 1)!
·
(

1

n− k
+

1

k + 1

)
=

n!

k! · (n− k − 1)!
· n+ 1

(n− k)(k + 1)

=
(n+ 1)!

(k + 1)! · (n− k)!
=

(n+ 1)!

(k + 1)! · [(n+ 1)− (k + 1)]!
=

(
n+ 1

k + 1

)
.

• (Case 2.) Suppose k < −1. Then k + 1 < 0.( n

k

)
=
( n

k + 1

)
= 0 =

(
n+ 1

k + 1

)
. Therefore

( n

k

)
+
( n

k + 1

)
=

(
n+ 1

k + 1

)
.

• (Case 3.) Suppose k = −1. Then k + 1 = 0.( n

k

)
= 0 and

( n

k + 1

)
= 1 =

(
n+ 1

k + 1

)
. Therefore

( n

k

)
+
( n

k + 1

)
=

(
n+ 1

k + 1

)
.

• (Case 4.) Suppose k ≥ n. Then n− k ≤ 0. Also, n− k − 1 ≤ 0( n

k

)
+
( n

k + 1

)
=

( n

n− k

)
+
( n

n− k − 1

)
=

( n

(n− k − 1) + 1

)
+
( n

n− k − 1

)
=

(
n+ 1

(n− k − 1) + 1

)
=

(
n+ 1

(n+ 1)− (k + 1)

)
=

(
n+ 1

k + 1

)
(b) i. Suppose n,m ∈ N.

For each j = 1, 2, · · · ,m, we have
(

n+ j + 1

j

)
−
(

n+ j

j − 1

)
=

(
n+ j

j

)
.

Then
m∑
j=0

(
n+ j

j

)
=

( n

0

)
+

m∑
j=1

(
n+ j

j

)

=
( n

0

)
+

m∑
j=1

(

(
n+ j + 1

j

)
−
(

n+ j

j − 1

)
)

=
( n

0

)
+ (

(
n+m+ 1

m

)
−
(

n+ 1

1− 1

)
)

=

(
n+m+ 1

m

)
ii. Suppose n,m ∈ N.

For each j = 1, 2, · · · ,m, we have
(

n+ j + 1

n+ 1

)
−
(

n+ j

n+ 1

)
=

(
n+ j

n

)
Then
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m∑
j=0

(
n+ j

n

)
=

( n

n

)
+

m∑
j=1

(
n+ j

n

)

=
( n

n

)
+

m∑
j=1

(

(
n+ j + 1

n+ 1

)
−
(

n+ j

n+ 1

)
)

=
( n

n

)
+ (

(
n+m+ 1

n+ 1

)
−
(

n+ 1

n+ 1

)
)

=

(
n+m+ 1

n+ 1

)
2. Solution.

Let n be a positive integer.

(a) Suppose r is an integer amongst 0, 1, · · · , n.

Then
(

n+ 1

r + 1

)
/

(
n+ 1

r

)
=

(n+ 1)!

[(r + 1)!]{[(n+ 1)− r − 1]!}
· (r!){[(n+ 1)− r]!}

(n+ 1)!
= · · · = n+ 1− r

r + 1
.

(b) i.

n∑
k=0

(k + 1) ·
(

n+ 1

k + 1

)
/

(
n+ 1

k

)
=

n∑
k=0

(k + 1) · n+ 1− k

k + 1
=

n∑
k=0

(n+ 1− k)

=
n∑

k=0

(n+ 1)−
n∑

k=0

k

= (n+ 1)2 − (n+ 1)n

2
=

n2 + 3n+ 2

2

ii.
n∏

k=0

((
n+ 1

k + 1

)
+

(
n+ 1

k

))
=

n∏
k=0

[((
n+ 1

k + 1

)
/

(
n+ 1

k

)
+ 1

)
·
(

n+ 1

k

)]

=

n∏
k=0

[(
n+ 1− k

k + 1
+ 1

)
·
(

n+ 1

k

)]

=

n∏
k=0

[
n+ 2

k + 1
·
(

n+ 1

k

)]

=

[
n∏

k=0

(n+ 2)

][
n∏

k=0

1

k + 1

]
·

(
n∏

k=0

(
n+ 1

k

))

=
(n+ 2)n+1

[(n+ 1)!]
·

(
n∏

k=0

(
n+ 1

k

))

3. Solution.
Denote by P (n) the following proposition:

(1 + x)n =
( n

0

)
+
( n

1

)
x+

( n

2

)
x2 + · · ·+

( n

k

)
xk + · · ·+

( n

n− 1

)
xn−1 +

( n

n

)
xn as polynomials.

• Note that (1 + x)0 = 1 =

(
0

0

)
as polynomials. Hence P (0) is true.

• Let m ∈ N. Suppose P (m) is true. Then

(1 + x)m =
( m

0

)
+
( m

1

)
x+

( m

2

)
x2 + · · ·+

( m

k

)
xk + · · ·+

( m

m− 1

)
xm−1 +

( m

m

)
xm

as polynomials.
We verify that P (m+ 1) is true:
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As polynomials,

(1 + x)m+1 = (1 + x)(1 + x)m

= (1 + x)
(( m

0

)
+
( m

1

)
x+

( m

2

)
x2 + · · ·

+
( m

k

)
xk + · · ·+

( m

m− 1

)
xm−1 +

( m

m

)
xm
)

=
(( m

0

)
+
( m

1

)
x+

( m

2

)
x2 + · · ·+

( m

k

)
xk +

( m

k + 1

)
xk+1 + · · ·+

( m

m

)
xm
)

+
(( m

0

)
x+

( m

1

)
x2 + · · ·

+
( m

k − 1

)
xk +

( m

k

)
xk+1 + · · ·+

( m

m−1

)
xm +

( m

m

)
xm+1

)
=

( m

0

)
+
(( m

0

)
+
( m

1

))
x+

(( m

1

)
+
( m

2

))
x2 + · · ·+

(( m

k−1

)
+
( m

k

))
xk

+
(( m

k

)
+
( m

k+1

))
xk+1 + · · ·+

(( m

m−1

)
+
( m

m

))
xm +

( m

m

)
xm+1

=

(
m+1

0

)
+

(
m+1

1

)
x+

(
m+1

2

)
x2 + · · ·+

(
m+1

k

)
xk +

(
m+1

k+1

)
xk+1

+ · · ·+
(

m+1

m

)
xm +

(
m+1

m+1

)
xm+1

It follows that P (m+ 1) is true.

By the Principle of Mathematical Induction, P (n) is true for any n ∈ N.

4. (a) Solution.
Let n be a positive integer, and f(x) be the polynomial f(x) = (1 + x)n.

Note that f(x) =

n∑
k=0

( n

k

)
xk as polynomials.

i.
n∑

k=0

( n

k

)
=

n∑
k=0

( n

k

)
· 1k = f(1) = (1 + 1)n = 2n.

ii.
n∑

k=0

(−1)k
( n

k

)
= f(−1) = (1− 1)n = 0.

iii.
n∑

k=0

1

2k

( n

k

)
= f(

1

2
) =

(
1 +

1

2

)n

=
3n

2n
.

iv.
n∑

k=0

(−1)k · 3k−1

5k+1

( n

k

)
=

1

15

n∑
k=0

(−1)k · 3k

5k

( n

k

)
=

1

15
f(−3

5
) =

1

15

(
1− 3

5

)n

=
2n

15 · 5n
.

(b) Solution.
Let m be a positive integer. Then 2m is a positive integer.
Let g(x) be the polynomial g(x) = (1 + x)2m.

Note that g(x) =

2m∑
k=0

(
2m

k

)
xk as polynomials.

i.
2m∑
k=0

(
2m

k

)
= g(1) = 22m.

ii.
2m∑
k=0

(−1)k
(

2m

k

)
= g(−1) = 0.

iii.

m∑
k=0

(
2m

2k

)
=

2m∑
j=0

1

2
(

(
2m

j

)
+ (−1)j

(
2m

j

)
)

=
1

2
(

2m∑
j=0

(
2m

j

)
+

2m∑
j=0

(−1)j
(

2m

j

)
) =

1

2
(22m + 0) = 22m−1
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iv.

m−1∑
k=0

(
2m

2k + 1

)
=

2m∑
j=0

1

2
(

(
2m

j

)
− (−1)j

(
2m

j

)
)

=
1

2
(

2m∑
j=0

(
2m

j

)
−

2m∑
j=0

(−1)j
(

2m

j

)
) =

1

2
(22m − 0) = 22m−1

(c) Hint. Note that 4p is a positive integer. Define the polynomial h(z) = (1 + z)4p.
The results in the previous parts give

4p∑
k=0

(
4p

k

)
= 24p,

4p∑
k=0

(−1)k
(

4p

k

)
= 0,

2p∑
k=0

(
4p

2k

)
= 24p−1,

2p−1∑
k=0

(
4p

2k + 1

)
= 24p−1.

Further obtain

(−1)p · 22p = h(i) =

2p∑
j=0

(−1)j
(

4p

2j

)
+ i

2p−1∑
j=0

(−1)j
(

4p

2j + 1

)
Make use of these above to the answers for the respective parts.
Answer.

i. (−1)p · 22p−1.
ii. 0.
iii. 24p−2 + (−1)p · 22p−1.
iv. 24p−2 − (−1)p · 22p−1.
v. 24p−2.
vi. 24p−2.

5. Solution.

(a) Let n ∈ N\{0}, and k ∈ Z.
• (Case 1.) Suppose 0 < k ≤ n. Then

k ·
( n

k

)
= k · n!

k! · (n− k)!
=

n!

(k − 1)! · (n− k)!
= n · (n− 1)!

(k − 1)! · [(n− 1)− (k − 1)]!
= n ·

(
n− 1

k − 1

)
.

• (Case 2.) Suppose k ≤ 0 or k > n. Then k ·
( n

k

)
= 0 = n ·

(
n− 1

k − 1

)
.

Hence in any case, k ·
( n

k

)
= n ·

(
n− 1

k − 1

)
.

(b) Let n be a positive integer.

i.
n∑

k=0

k
( n

k

)
=

n∑
k=1

k
( n

k

)
=

n∑
k=1

n

(
n− 1

k − 1

)
= n

n∑
k=1

(
n− 1

k − 1

)
= n

n−1∑
j=0

(
n− 1

j

)
= n · 2n−1.

Alternative argument. Let f : R −→ R by f(x) = (1 + x)n for any x ∈ R.
f is smooth on R, and for any x ∈ R, we have

n(1 + x)n−1 = f ′(x) =

n∑
k=1

k
( n

k

)
xk−1.

Then
n∑

k=0

k
( n

k

)
= f ′(1) = n · 2n−1.

ii. We have n ≤ 1 or n ≥ 2.

• (Case 1.) Suppose n = 1. Then We have
n∑

k=0

(−1)k+1k
( n

k

)
=

1∑
k=0

(−1)k+1k
( n

k

)
= (−1)1+1 · 1 ·

(
1

1

)
=

1.
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• (Case 2.) Suppose n ≥ 2. Then we have

n∑
k=0

(−1)k+1k
( n

k

)
=

n∑
k=1

(−1)k+1k
( n

k

)
=

n∑
k=1

(−1)k+1n

(
n− 1

k − 1

)

= n
n∑

k=1

(−1)k+1

(
n− 1

k − 1

)

= n

n−1∑
j=0

(−1)j+2

(
n− 1

j

)

= n

n−1∑
j=0

(−1)j
(

n− 1

j

)
= n · 0 = 0

iii. We have n ≥ 2 or n ≤ 1.
• (Case 1.) Suppose n ≥ 2. Then

n∑
k=0

k(k − 1)
( n

k

)
=

n∑
k=2

k(k − 1)
( n

k

)
=

n∑
k=2

n(k − 1)

(
n− 1

k − 1

)

=

n∑
k=2

n(n− 1)

(
n− 2

k − 2

)

= n(n− 1)

n∑
k=2

(
n− 2

k − 2

)

= n(n− 1)

n−2∑
j=0

(
n− 2

j

)
= n(n− 1) · 2n−2

• (Case 2). Suppose n ≤ 1. Then
n∑

k=0

k(k − 1)
( n

k

)
= 0 = n(n− 1) · 2n−2.

Hence in any case,
n∑

k=0

k(k − 1)
( n

k

)
= n(n− 1) · 2n−2.

iv.
n∑

k=0

k2
( n

k

)
=

n∑
k=0

[k(k − 1) + k]
( n

k

)
=

n∑
k=0

k(k − 1)
( n

k

)
+

n∑
k=0

k
( n

k

)
= n(n− 1) · 2n−2 + n · 2n−1 = n(n+ 1) · 2n−2

(c) Let m be a positive integer. Note that m+ 1 > 1.

For each non-negative integer k, we have (k + 1) ·
(

m+ 1

k + 1

)
= (m+ 1) ·

( m

k

)
.

Therefore
1

k + 1
·
( m

k

)
=

1

m+ 1
·
(

m+ 1

k + 1

)
.
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i.
m∑

k=0

1

k + 1

( m

k

)
=

m∑
k=0

1

m+ 1

(
m+ 1

k + 1

)

=
1

m+ 1

m∑
k=0

(
m+ 1

k + 1

)

=
1

m+ 1

m+1∑
j=1

(
m+ 1

j

)

=
1

m+ 1
(

m+1∑
j=0

(
m+ 1

j

)
− 1) =

2m+1 − 1

m+ 1

Alternative argument. Let f : R −→ R by f(x) = (1 + x)n for any x ∈ R.
f is continuous on R, and for any x ∈ R, we have

(1 + x)n+1 − 1

n+ 1
=

∫ x

0

f(t)dt =

n∑
k=0

1

k + 1

( n

k

)
xk+1.

Then
n∑

k=0

1

k + 1

( n

k

)
=

∫ 1

0

f(t)dt =
2n+1 − 1

n+ 1
.

ii.
m∑

k=0

(−1)k

k + 1

( m

k

)
=

m∑
k=0

(−1)k

m+ 1

(
m+ 1

k + 1

)

=
1

m+ 1

m∑
k=0

(−1)k
(

m+ 1

k + 1

)

=
1

m+ 1

m+1∑
j=1

(−1)j−1

(
m+ 1

j

)

=
1

m+ 1
(−

m+1∑
j=0

(−1)j
(

m+ 1

j

)
+ 1) =

1

m+ 1

iii.
m∑

k=0

1

(k + 2)(k + 1)

( m

k

)
=

m∑
k=0

1

m+ 1
· 1

k + 2

(
m+ 1

k + 1

)

=

m∑
k=0

1

(m+ 2)(m+ 1)

(
m+ 2

k + 2

)

=
1

(m+ 2)(m+ 1)

m∑
k=0

(
m+ 2

k + 2

)

=
1

(m+ 2)(m+ 1)

m+2∑
j=2

(
m+ 2

j

)

=
1

(m+ 2)(m+ 1)
[

m+2∑
j=0

(
m+ 2

j

)
− 1− (m+ 2)] =

2m+2 −m− 3

(m+ 2)(m+ 1)

6. Solution.
Let α be a complex number. Suppose 0 < |α| < 1.

Define β =
1

|α|
− 1. We have β > 0.

(a) Suppose n ≥ 2. Then, by Bernoulli’s Inequality, (1 + β)n ≥ 1 + nβ ≥ nβ. Therefore |α|n =
1

(1 + β)n
≤ 1

nβ
.

(b) Suppose n ≥ 3. Then (1 + β)n = 1 + nβ +
n(n− 1)

2
β2 + · · · · · · · · ·︸ ︷︷ ︸

finitely many non-negative terms

≥ n(n− 1)

2
β2.

Therefore n|α|n =
n

(1 + β)n
≤ 2

(n− 1)β2
=

2

[n/2 + (n/2− 1)]β2
≤ 2

(n/2)β2
=

4

nβ2
.
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(c) Suppose n ≥ 4. Then

(1 + β)n = 1 + nβ +
n(n− 1)

2
β2 +

n(n− 1)(n− 2)

6
β3 + · · · · · · · · ·︸ ︷︷ ︸

finitely many non-negative terms

≥ n(n− 1)(n− 2)

6
β3.

Therefore

n2|α|n =
n2

(1 + β)n
≤ 6n

(n− 1)(n− 2)β3
=

6n

[n/2 + (n/2− 1)][n/3 + (2n/3− 2)]β3
≤ 6n

(n/2)(n/3)β3
=

36

nβ3
.

(d) Hint. Generalize what you see in part (b) and part (c).

7. ——
8. Answer.

(a) ——

(b) i. f ′(x) =

{
0 if x < 0
x−2e−1/x if x > 0

.

ii. ——
iii. ——

(c) i. Hint. Apply mathematical induction to the proposition S(n) below:
• There exists some polynomial function Pn such that

f (n)(x) =

{
0 if x < 0

Pn(1/x)e
−1/x if x > 0

.

ii. Hint. Apply mathematical induction to the proposition T (n) below:
• f is n-times differentiable at 0 and f (n)(0) = 0.

Be careful: that f is n-times differentiable at 0 for each specific n is something which needs being argued for. It
should not be taken for granted, even though it is apparent by the result of the previous part that f is smooth
at every point of R other than 0.

Remark. The Taylor series Tf,0(x) of the function f about the point 0 is given by the expression
∞∑

n=0

0 · xn.

But f is not the zero function; in fact, for any δ > 0, we have f(δ/2) ̸= 0. Therefore f fails to be equal to the
constant zero function on (0, δ),

9. Solution.
Let f : R −→ R be a function. Suppose that f(x+ y) = f(x) + f(y) for any x, y ∈ R.

(a) We have f(0) = f(0 + 0) = f(0) + f(0). Then f(0) = 0.
(b) Let x ∈ R. Note that −x ∈ R.

We have f(x) + f(−x) = f(x+ (−x)) = f(0) = 0. Then f(−x) = −f(x).
(c) Denote by P (n) the proposition f(n) = nf(1).

• We have f(0) = 0 = 0 · f(1). Then P (1) is true.
• Let k ∈ N. Suppose P (k) is true. Then f(k) = kf(1).

We verify that P (k + 1) is true:
We have f(k + 1) = f(k) + f(1) = kf(1) + f(1) = (k + 1)f(1).
Hence P (k + 1) is true.

By the Principle of Mathematical Induction, P (n) is true for any n ∈ N.
(d) Let m ∈ Z.

• Suppose m ≥ 0. Then m ∈ N. We have f(m) = mf(1).
• Suppose m < 0. Then −m > 0.

We have −f(m) = f(−m) = (−m) · f(1) = −mf(1).
Then f(m) = mf(1).

Hence, in any case, we have f(m) = mf(1).
(e) Let r ∈ Q. There exist some m,n ∈ Z such that n ̸= 0 and m = nr.

Now mf(1) = f(m) = f(nr) = nf(r).
Then f(r) =

m

n
f(1) = rf(1).

(f) Now further suppose that f is continuous on R.
Let u ∈ R. There exists some infinite sequence of rational numbers {sn}∞n=0 such that lim

n→∞
sn = u.

For each n ∈ N, we have f(sn) = f(1)sn.
Then, by continuity, we have f(u) = f

(
lim
n→∞

sn

)
= lim

n→∞
f(sn) = lim

n→∞
f(1)sn = f(1)u.
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