MATH1050 Exercise 4 Supplement (Answers)

- 1. —
- 2. —
- 3. —
- 4. —
- 5. —
- 6. —
- 7. (a) —

(b)
$$\sum_{k=1}^{2m} \cos^2(k\beta) = \frac{\cos(2m\beta)\sin((2m+1)\beta)}{2\sin(\beta)} + \frac{2m-1}{2} \text{ and } \sum_{k=1}^{2m} \sin^2(k\beta) = \frac{\cos(2m\beta)\sin((2m+1)\beta)}{2\sin(\beta)} + \frac{2m+1}{2} \cos(2m\beta)\sin((2m+1)\beta) + \frac{2m+1}{2} \cos(2m\beta)\cos((2m+1)\beta) + \frac{2m+1}{2} \cos((2m\beta)\cos((2m+1)\beta)) + \frac{2m+1}{2} \cos((2m\beta)\cos((2m+1)\beta) + \frac{2m+1}{2} \cos((2m\beta)\cos((2m+1)\beta)) + \frac{2m+1}{2} \cos((2m\beta)\cos((2m+1)\beta)) + \frac{2m+1}{2} \cos((2m\beta)\cos((2$$

- 8. —
- 9. —
- 10. —
- 11. —
- 12. **Remark.** Begin the argument with this assumption: 'Let $\{a_n\}_{n=1}^{\infty}$ be an infinite sequence in \mathbb{N} . Suppose $n \leq \sum_{j=1}^{n} a_j^2 \leq n+1+(-1)^n$ for each positive integer n.' Now apply mathematical induction to the proposition P(n) below:
 - $a_1 = a_2 = \dots = a_n = 1$.
- 13. (a) **Remark.** Apply mathematical induction to the proposition P(n) below:
 - $(\sqrt{3}+1)^{2n+1}-(\sqrt{3}-1)^{2n+1}$ is an integer which is divisible by 2^{n+1} , and $(\sqrt{3}+1)^{2n+3}-(\sqrt{3}-1)^{2n+3}$ is an integer which is divisible by 2^{n+2} .
 - (b) **Remark.** Apply mathematical induction to the proposition P(n) below:
 - $(3+\sqrt{5})^{n+1}+(3-\sqrt{5})^{n+1}$ is an integer which is divisible by 2^{n+1} , and $(3+\sqrt{5})^{n+2}+(3-\sqrt{5})^{n+2}$ is an integer which is divisible by 2^{n+2} .
- 14. —
- 15. —
- 16. —
- 17. —
- 18. (a) **Remark.** Apply mathematical to the proposition P(n) below:
 - Suppose z_1, z_2, \dots, z_n are complex numbers. Then $\sqrt{|z_1|^2 + |z_2|^2 + \dots + |z_n|^2} \le |z_1| + |z_2| + \dots + |z_n|$.
 - (b) **Remark.** Apply mathematical to the proposition P(n) below:
 - Suppose $\theta_1, \theta_2, \dots, \theta_n \in (0, \pi)$. Then $|\sin(\theta_1 + \theta_2 + \dots + \theta_n)| < \sin(\theta_1) + \sin(\theta_2) + \dots + \sin(\theta_n)$.
 - (c) **Remark.** Apply mathematical to the propostion P(n) below:
 - Suppose a_1, a_2, \dots, a_n are positive real numbers. Then $(a_1 + a_2 + \dots + a_n) \left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} \right) \ge n^2$.
 - (d) **Remark.** Begin the argument with this assumption: 'Let $s, t \in \mathbb{Q}$, with t > 0.' From this point on, s, t are fixed. Now apply mathematical to the propostion P(n) below:
 - There exist $a, b \in \mathbb{Q}$ such that $(s + \sqrt{t})^n = a + b\sqrt{t}$.
- 19. —
- 20. —
- 21. (a) i. $A = B = C = \frac{1}{2}$.

ii.

(b) i. M = 243, N = 1.ii. r = 3.

22.