
MATH1050 Exercise 4 Supplement

1. Apply mathematical induction to justify each of the statements below:

(a) 1

1 · 4
+

1

4 · 7
+

1

7 · 10
+ · · ·+ 1

(3n− 2)(3n+ 1)
=

n

3n+ 1
for any n ∈ N\{0}.

(b) −12 + 22 − 32 + 42 + · · ·+ (−1)nn2 = (−1)n · n(n+ 1)

2
whenever n is a positive integer.

(c)
(
1− 1

22

)(
1− 1

32

)(
1− 1

42

)
· ... ·

(
1− 1

n2

)
=

n+ 1

2n
for any n ∈ N\{0, 1}.

(d) 0

20
+

1

21
+

2

22
+ · · ·+ n

2n
= 2− n+ 2

2n
for any n ∈ N.

(e) (12 + 1) · (1!) + (22 + 2) · (2!) + (32 + 3) · (3!) + · · · (n2 + 1) · (n!) = n · [(n+ 1)!] for any n ∈ N\{0}.

(f)♢ 02 + 12 + 22 + · · ·+ (2n− 1)2 =
n(2n− 1)(4n− 1)

3
for each positive integer n.

(g)♢
n∑

k=0

k5 =
n2(n+ 1)2(2n2 + 2n− 1)

12
for any n ∈ N.

(h)♣
n∑

k=0

k4 =
n(n+ 1)(2n+ 1)(3n2 + 3n− 1)

30
for any n ∈ N.

(i)♢
2n∑
k=1

1

k(k + 1)
=

2n

2n+ 1
for any positive integer n.

2. Apply mathematical induction to prove the statements below. You have to think carefully which proposition is to be
formulated and proved by mathematical induction.

(a) Suppose α is a number, not equal to 1. Then
n∑

k=1

αk−1 =
1− αn

1− α
for each positive integer n.

(b)♢ Suppose α is a number, not equal to 1. Then
n∑

k=1

kαk−1 =
1− (n+ 1)αn + nαn+1

(1− α)2
for each positive integer n.

3. Apply mathematical induction to justify each of the statements below:

(a) n2 < 2n whenever n is an integer greater than 4.

(b) n3 < 3n for any integer greater than 4.

(c) 1

12
+

1

22
+

1

32
+ · · ·+ 1

n2
≤ 2− 1

n
for any positive integer n.

(d) n

2
<

1

2
+

1

3
+ · · ·+ 1

2n
< n for any n ∈ N\{0, 1}.

(e)
n∏

k=1

[(2k)!] > [(n+ 1)!]n whenever n is an integer greater than 1.

4. Apply mathematical induction to justify each of the statements below:

(a) n(2n2 + 1) is divisible by 3 for any n ∈ N.
(b) (2n+ 1)(2n+ 3)(2n+ 5) is divisible by 3 for any n ∈ N.
(c) (2n+ 1)(2n+ 3)(2n+ 5)(2n+ 7)(2n+ 9) is divisible by 5 for any n ∈ N.

(d) 24n+3 + 33n+1 is divisible by 11 for any n ∈ N.

(e) 2n+1 + 32n−1 is divisible by 7 for any positve integer n.

5.♢ Let {an}∞n=0 be an infinite sequence of numbers. Let α, β be numbers, with α ̸= 1. Suppose an+1 = αan + β for
each n ∈ N.

Apply the Telescopic Method to prove that an = αna0 +
β(1− αn)

1− α
for each n ≥ 1.
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6. Justify the statements below, by applying the Telescopic Method, or by mathematical induction. If you choose
mathematical induction, you have to think carefully which proposition is to be formulated and proved by mathematical
induction.

(a) Let θ ∈ R. Suppose sin(θ) ̸= 0. Then cos(θ) cos(2θ) cos(22θ) · ... · cos(2nθ) = sin(2n+1θ)

2n+1 sin(θ)
for any n ∈ N.

(b) Let θ ∈ R. Suppose sin(
θ

2
) ̸= 0. Then 1 + 2

n∑
k=1

cos(kθ) =
sin((n+ 1/2)θ)

sin(θ/2)
for any n ∈ N.

(c) Let θ ∈ R. Suppose sin(2pθ) ̸= 0 for any p ∈ N. Then
n∑

k=0

2k tan(2kθ) = cot(θ)− 2n+1 cot(2n+1θ) for any n ∈ N.

(d) Let θ ∈ R. Suppose sin(2pθ) ̸= 0 for any p ∈ N. Then
n∑

k=1

csc(2kθ) = cot(θ)− cot(2nθ) for any n ∈ N\{0}.

7. (a) Suppose θ, α are real numbers.

i. Verify that cos(θ + kα) sin(α) =
1

2

(
sin(θ +

2k + 1

2
α)− sin(θ +

2k − 1

2
α)

)
for each integer k.

ii.♢ Now suppose sin(
α

2
) ̸= 0 also. By applying mathematical induction, or otherwise, prove that

n∑
k=0

cos(θ + kα) =
cos(θ + nα/2) sin((n+ 1)α/2)

sin(α/2)
for each n ∈ N.

(b)♣ Suppose sin(β) ̸= 0. By applying the results above, or otherwise, prove that
2m∑
k=1

cos2(kβ) =
cos(Amβ) sin((Bm+ C)β)

D sin(β)
+
Em+ F

2
and

2m∑
k=1

sin2(kβ) =
cos(Amβ) sin((Bm+ C)β)

D sin(β)
+
Gm+H

2

for each positive integer m.
Here A,B,C,D,E, F,G,H are integers whose respective values you have to determine explicitly.

8. Apply mathematical induction to prove the statement below:

• Let {an}∞n=1 be the infinite sequence of real numbers defined by{
a1 = 0

an+1 = 2n− an if n ≥ 1
.

Then an = n+
(−1)n − 1

2
for each positive integer n.

9. Apply mathematical induction to prove the statement below:

• Let a, b be distinct positive real numbers, and {cn}∞n=1 be the infinite sequence of real numbers defined by
c1 = a+ b

cn+1 = a+ b− ab

cn
if n ≥ 1

.

Then cn =
an+1 − bn+1

an − bn
for each positive integer n.

10.♣ Prove the statement below:

• Let α, β are the two distinct roots of the polynomial f(x) = x2 − 2x − 1. Let {an}∞n=1 be the infinite sequence
of real numbers defined by {

a1 = 1, a2 = 3,

an+2 = 2an+1 + an if n ≥ 1
.

Then an =
1

2
(αn + βn) for each positive integer n.

Remark. You have to think carefully which proposition is to be formulated and proved by mathematical induction.
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11.♣ Apply mathematical induction to prove the statement below:

• Let {an}∞n=0 be the infinite sequence of real numbers defined by{
a0 = 1, a1 = 6, a2 = 45,

an+3 = 9an+2 − 27an+1 + 27an if n ≥ 0
.

Then an = 3n(n2 + 1) for each n ∈ N.

Remark. You have to think carefully which proposition is to be formulated and proved by mathematical induction.

12.♣ Apply mathematical induction to prove the statement below:

• Let {an}∞n=1 be an infinite sequence in N. Suppose n ≤
n∑

j=1

aj
2 ≤ n+1+(−1)n for each positive integer n. Then

an = 1 for each positive integer n.

Remark. You have to think carefully which proposition is to be formulated and proved by mathematical induction.

13.♣ Apply mathematical induction to justify each of the statements below. You have to think carefully which proposition
is to be formulated and proved by mathematical induction.

(a) For any n ∈ N, (
√
3 + 1)2n+1 − (

√
3− 1)2n+1 is an integer which is divisible by 2n+1.

(b) For any n ∈ N, (3 +
√
5)n+1 + (3−

√
5)n+1 is an integer which is divisible by 2n+1.

14. Prove the statement below:

• Suppose a, b are positive real numbers. Then an + bn

2
≥
(
a+ b

2

)n

for any n ∈ N\{0}.

15. (a) Let u, v, x, y be real numbers, and ζ = u+ vi, η = x+ yi.
By considering the number ζη̄, or otherwise, deduce the inequality (ux+ vy)2 ≤ (u2 + v2)(x2 + y2).

(b)♢ Apply mathematical induction, with the help of the result above where appropriate, to prove that the statement
below:

• Let a, b, c be positive real numbers. Suppose a2 + b2 = c2. Then an + bn < cn for each integer n ≥ 3.

16. Apply mathematical induction to prove the statement below:

• Suppose x is a positive real number. Then xn

1 + x+ x2 + · · ·+ x2n
≤ 1

2n+ 1
for any positive integer n.

17. (a) Apply mathematical induction to prove the statement below:

• Suppose x is a positive real number. Then n(x2n+1+1)+x2n+1+x2n+2 ≤ (n+1)(x2n+3+1) for any n ∈ N.
(b) Hence, or otherwise, prove the statement below:

• For any a > 0, for any n ∈ N\{0}, a+ a2 + a3 + · · ·+ a2n ≤ n(a2n+1 + 1).

18. Apply mathematical induction to justify each of the statements below:

(a)♢ Let n ∈ N ∈ \{0, 1}. Suppose z1, z2, · · · , zn are complex numbers. Then√
|z1|2 + |z2|2 + · · ·+ |zn|2 ≤ |z1|+ |z2|+ · · ·+ |zn|.

(b)♢ Let n ∈ N\{0, 1}. Suppose θ1, θ2, · · · , θn ∈ (0, π). Then | sin(θ1+θ2+ · · ·+θn)| < sin(θ1)+sin(θ2)+ · · ·+sin(θn).

(c)♣ Let n ∈ N\{0}. Suppose a1, a2, · · · , an are positive real numbers. Then

(a1 + a2 + · · ·+ an)

(
1

a1
+

1

a2
+ · · ·+ 1

an

)
≥ n2.
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(d)♣ Let s, t ∈ Q, with t > 0, and n ∈ N\{0}. There exist a, b ∈ Q such that (s+
√
t)n = a+ b

√
t.

Remark. You have to think carefully which proposition is to be formulated and proved by mathematical
induction. Do you ‘fix’ s, t right at the beginning, so that your proposition handles the same s, t throughout the
argument? Or do you accommodate all possible ‘s, t’ inside the same proposition?

19. (a)♢ Apply mathematical induction to prove the statement below:
• Let n ∈ N\{0, 1}. Suppose a1, a2, · · · , an, b1, b2, · · · , bn are real numbers. Further suppose a1 ≤ a2 ≤ · · · ≤

an and b1 ≤ b2 ≤ · · · ≤ bn. Then

n

n∑
j=1

ajbj −

 n∑
j=1

aj

( n∑
k=1

bk

)
=

1

2

n∑
j=1

n∑
k=1

(aj − ak)(bj − bk).

(b) Hence, or otherwise, prove the statement below, known as Chebychev’s Inequality:
• Let n ∈ N\{0, 1}. Suppose a1, a2, · · · , an, b1, b2, · · · , bn are real numbers. Further suppose a1 ≤ a2 ≤ · · · ≤

an and b1 ≤ b2 ≤ · · · ≤ bn. Then  1

n

n∑
j=1

aj

( 1

n

n∑
k=1

bk

)
≤ 1

n

n∑
j=1

ajbj

.

20. (a)♢ Prove the statement below:

• Suppose ζ, η are complex numbers, and c is a positive real number. Then |ζ+ η|2 ≤ (1+ c)|ζ|2+(1+
1

c
)|η|2.

(b)♣ Apply mathematical induction, together with the result above, to prove the statement below:
• Let n ∈ N\{0, 1}. Suppose z1, z2, · · · , zn are complex numbers, and a1, a2, · · · , an are positive real numbers.

Further suppose
n∑

j=1

1

aj
= 1. Then

∣∣∣∣∣∣
n∑

j=1

zj

∣∣∣∣∣∣
2

≤
n∑

j=1

aj |zj |2.

21. (a) Let f(x) be the quartic polynomial given by f(x) = x4 + x3 + x2 + x+ 1.
Prove that f(x) has no real root.
(Hint. Apply the proof-by-contradication argument. Can you express f(x) as the sum of a positive real number
together with one or several whole squares involving the indeterminate x?)

(b) Let a0, a1, a2, · · · , a9 form a geometric progression, with common ratio r. Suppose a0 ̸= 0. Further suppose
a0 + a1 + · · ·+ a9 = 244(a0 + a1 + a2 + a3 + a4).

i. Prove that (r5 −M)(N + r+ r2 + r3 + r4) = 0. Here M,N are positive integers whose respective value you
have to determine explicitly.

ii. Find the value of r.

22. (a)♢ Prove the statement below:
• Let p, q be distinct positive prime numbers. √

pq is irrational.

Remark. You may need apply Euclid’s Lemma for several times.
(b) i. Prove the statement below:

• Let a, b, c be rational numbers. Suppose a, c are positive and
√
a,
√
c are irrational numbers. Further

suppose
√
a = b+

√
c. Then b = 0.

ii. Hence, or otherwise, prove the statement below:
• Let s, t, u, v be rational numbers. Suppose t, v are positive and

√
t,
√
v are irrational numbers. Further

suppose s+
√
t = u+

√
v. Then s = u and t = v.

(c) Let A,B, p, q be positive integers. Suppose
√
B is an irrational number. Further suppose p, q are distinct prime

numbers. Prove the statements below

i.♢
√
A+ 2

√
B =

√
p+

√
q iff (A = p+ q, B = pq, and A > 2

√
B).

ii.♣
√
A+ 2

√
B =

√
p+

√
q iff

√
|A− 2

√
B| = |√p−√

q|.
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