
MATH1050 Exercise 4 (Answers and solution)
1. Solution.

(a) Denote by P (n) the proposition

1 · 2 + 2 · 5 + 3 · 8 + · · ·+ n(3n− 1) = n2(n+ 1).

• Note that 1 · 2 = 2 = 12(1 + 1). Then P (1) is true.
• Let k be a positive integer. Suppose P (k) is true. Then

1 · 2 + 2 · 5 + 3 · 8 + · · ·+ k(3k − 1) = k2(k + 1).

We verify that P (k + 1) is true:
We have

1 · 2 + 2 · 5 + 3 · 8 + · · ·+ k(3k − 1) + (k + 1)[3(k + 1)− 1]

= k2(k + 1) + (k + 1)(3k + 2) = (k + 1)[k2 + (3k + 2)] = · · · = (k + 1)2[(k + 1) + 1]

Hence P (k + 1) is true.
By the Principle of Mathematical Induction, P (n) is true for any positive integer n.

(b) Denote by P (n) the proposition
1 +

1√
2
+

1√
3
+ · · ·+ 1√

n
≥

√
n.

• We have 1 ≥
√
1. Hence P (1) is true.

• Let k be a positive integer. Suppose P (k) is true. Then 1 +
1√
2
+

1√
3
+ · · ·+ 1√

k
≥

√
k.

We verify that P (k + 1) is true:

1 +
1√
2
+

1√
3
+ · · ·+ 1√

k
+

1√
k + 1

≥
√
k +

1√
k + 1

=

√
k ·

√
k + 1 + 1√
k + 1

≥
√
k ·

√
k + 1√

k + 1

=
√
k + 1

Hence P (k + 1) is true.
By the Principle of Mathematical Induction, P (n) is true whenever n is a positive integer.

(c) Denote by P (n) the proposition
n2 < 2n−1.

• We have 72 = 49 < 64 = 27− 1. Then P (7) is true.
• Let k be an integer greater than 6. Suppose P (k) is true. Then k2 < 2k−1. Therefore 2k−1 > 2k.

We have

2(k+1)−1 − (k + 1)2 = 2k − (k2 + 2k + 1)

≥ 2k − k2 − 2k − k

= 2k − k2 − 3k

≥ 2kk2 − k · k = 2(2k−1 − k2) >≥ 0.

Then (k + 1)2 < 2(k+1)−1. Hence P (k + 1) is true.
By the Principle of Mathematical Induction, P (n) is true whenever k is an integer greater than 6.

(d) Denote by P (n) the proposition that n(n2 + 2) is divisible by 3.
• We have 0 · (02 + 2) = 0 = 3 · 0 and 0 ∈ Z. Hence 0 · (02 + 2) is divisible by 3.

Then P (0) is true.
• Let k be a positive integer. Suppose P (k) is true. Then k(k2 + 2) is divisible by 3. Therefore there exists

some q ∈ Z such that k(k2 + 2) = 3q.
We verify that P (k + 1) is true:
We have

(k + 1)[(k + 1)2 + 2] = k3 + 3k2 + 5k + 3 = k(k2 + 2) + 3k2 + 3 = 3q + 3k2 + 3 = 3(q + k2 + 1).

Note that q + k2 + 1 ∈ Z. Then (k + 1)[(k + 1)2 + 2] is divisible by 3.
Hence P (k + 1) is true.
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By the Principle of Mathematical Induction, P (n) is true for any n ∈ N.
(e) Denote by P (n) the proposition that 7n(3n+ 1)− 1 is divisible by 9.

• We have 70(3 · 0 + 1)− 1 = 0. 0 is divisible by 9. Then P (0) is true.
• Let k ∈ N. Suppose P (k) is true. Then 7k(3k + 1)− 1 is divisible by 9. Therefore there exists some q ∈ Z

such that 7k(3k + 1)− 1 = 9q.
We verify that P (k + 1) is true:

7k+1[3(k + 1) + 1]− 1 = 7 · 7k[(3k + 1) + 3]− 1

= 7 · 7k(3k + 1) + 3 · 7k+1 − 1

= 7 · [7k(3k + 1)− 1] + 3(7k+1 − 1) + 9

= 7 · 9q + 3(7− 1)

k∑
j=0

7j + 9 = 9

7q + 2

k∑
j=0

7j + 1



Since q ∈ Z and k ∈ N, we have 7q + 2

k∑
j=0

7j + 1 ∈ Z. Therefore 7k+1[3(k + 1) + 1]− 1 is divisible by 9.

Hence P (k + 1) is true.
By the Principle of Mathematical Induction, P (n) is true for any n ∈ N.

2. Solution.
Suppose {an}∞n=0 is an infinite sequence of complex numbers. Apply mathematical induction to prove the statements
below:
(a) Denote by P (n) the proposition

n∑
k=0

(ak+1 − ak) = an+1 − a0.

• We have
0∑

k=0

(ak+1 − ak) = a1 − a0 = a0+1 − a0.

Therefore P (0) is true.

• Let m ∈ N. Suppose P (m) is true. Then
m∑

k=0

(ak+1 − ak) = am+1 − a0.

We verify P (m+ 1):
We have

m+1∑
k=0

(ak+1 − ak) =

m∑
k=0

(ak+1 − ak) + (am+2 − am+1)

= (am+1 − a0) + (am+2 − am+1) = am+2 − a0 = a(m+1)+1 − a0.

Hence P (k + 1) is true.
By the Principle of Mathematical Induction, P (n) is true for any n ∈ N.

(b) Further suppose aj ̸= 0 for each j ∈ N.
Denote by P (n) the proposition

n∏
k=0

(ak+1 − ak) =
an+1

a0
.

• We have
0∏

k=0

(ak+1 − ak) =
a1
a0

=
a0+1

a0
.

Therefore P (0) is true.

• Let m ∈ N. Suppose P (m) is true. Then
m∏

k=0

(ak+1 − ak) =
am+1

a0
.

We verify P (m+ 1):
We have

m+1∏
k=0

ak+1

ak
=

(
m∑

k=0

ak+1

ak

)
· am+2

am+1
=

am+1

a0
· am+2

am+1
=

am+2

a0
=

a(m+1)+1

a0
.

Hence P (k + 1) is true.
By the Principle of Mathematical Induction, P (n) is true for any n ∈ N.
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3. Solution.

(a) Denote by P (n) the proposition
2n∑
k=1

(−1)k+1

k
=

2n∑
k=n+1

1

k
.

• We have
2·1∑
k=1

(−1)k+1

k
= 1− 1

2
=

1

2
=

2·1∑
k=1+1

1

k
.

Hence P (1) is true.
• Let m be a positive integer. Suppose P (m) is true. We deduce that P (m+ 1) is true:

2(m+1)∑
k=1

(−1)k+1

k
−

2(m+1)∑
k=(m+1)+1

1

k

=

2m∑
k=1

(−1)k+1

k
+

(−1)2m+1+1

2m+ 1
+

(−1)2m+2+1

2m+ 2
−

2m∑
k=m+1

1

k
+

1

m+ 1
− 1

2m+ 1
− 1

2m+ 2

= · · · = 0

Then
2m∑
k=1

(−1)k+1

k
=

2m∑
k=m+1

1

k
.

Hence P (m+ 1) is true.
By the Principle of Mathematical Induction, P (n) is true for any positive integer n.

(b) i. Let x be a real number. Suppose x > 1.

We have 1

x
=

∫ x

x−1

dt

x
<

∫ x

x−1

dt

t
= ln(x)− ln(x− 1) = ln

(
x

x− 1

)
.

We also have ln

(
x+ 1

x

)
= ln(x+ 1)− ln(x) =

∫ x+1

x

dt

t
<

∫ x+1

x

dt

x
=

1

x

Therefore ln

(
x+ 1

x

)
<

1

x
< ln

(
x

x− 1

)
.

ii. Let n be a positive integer.

For each k = n+ 1, n+ 2, · · · , 2n, we have ln

(
k + 1

k

)
<

1

k
< ln

(
k

k − 1

)
.

Then
2n∑

k=n+1

1

k
>

2n∑
k=n+1

ln

(
k + 1

k

)
= ln

(
2n∏

k=n+1

k + 1

k

)
= ln

(
2n+ 1

n+ 1

)
.

Also
2n∑

k=n+1

1

k
<

2n∑
k=n+1

ln

(
k

k − 1

)
= ln

(
2n∏

k=n+1

k

k − 1

)
= ln(2)

Therefore ln

(
2n+ 1

n+ 1

)
<

2n∑
k=n+1

1

k
< ln(2).

iii. Let n be a positive integer. By the results in the previous parts, we have ln

(
2− 1

n+ 1

)
= ln

(
2n+ 1

n+ 1

)
<

2n∑
k=1

(−1)k+1

k
< ln(2).

By the continuity of the logarithmic function, lim
n→∞

ln

(
2− 1

n+ 1

)
= ln(2). Also lim

n→∞
ln(2) = ln(2).

By the Sandwich Rule, the limit lim
n→∞

2n∑
k=1

(−1)k+1

k
exists and is equal to ln(2).

4. Answer.

(I) Suppose
n∑

j=0

aj =

(
1 + an

2

)2

for each n ∈ N.

(II) an = 2n+ 1.

(III) We have a0 =

0∑
j=0

aj =

(
1 + a0

2

)2

=
1

4
(1 + 2a0 + a0

2). Then (a0 − 1)2 = a0
2 − 2a0 + 1 = 0. Therefore

a0 = 1 = 2 · 0 + 1.
(IV) Let k ∈ N. Suppose P (k) is true.
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(V) We have

(
1 + ak+1

2

)2

=

k+1∑
j=0

aj =

k∑
j=0

aj + ak+1 =

(
1 + ak

2

)2

+ ak+1 =

[
1 + (2k + 1)

2

]2
+ ak+1 = (k + 1)2 + ak+1.

Then 1

4
(1 + 2ak+1 + ak+1

2) = (k + 1)2 + ak+1.

Therefore (ak+1 − 1)2 = ak+1
2 − 2ak+1 + 1 = (2k + 2)2.

Hence ak+1 = 2k + 3 or ak+1 = −2k − 1. Since ak+1 > 0, we have ak+1 = 2k + 3 = 2(k + 1) + 1.
(VI) By the Principle of Mathematical Induction, P (n) is true for any n ∈ N.

5. Answer.

(I) 1 = −(−1) = α+ β

(II) 3 = [−(−1)]2 − 2(−1) = (α+ β)2 − 2αβ = α2 + β2

(III) Let k be a positive integer. Suppose P (k) is true.
(IV) αk+1 + βk+1

(V) P (k)

(VI) ak+2 = ak+1 + ak = (αk+1 + βk+1) + (αk + βk) = αk(α+ 1) + βk(β + 1) = αk · α2 + βk · β2 = αk+2 + βk+2.
(VII) By the Principle of Mathematical Induction, P (n) is true for each positive integer n.

6. Solution.
Suppose a ∈ (−1,+∞). Denote by P (n) the proposition (1 + a)n ≥ 1 + na.

• We have (1 + a)2 = 1 + 2a+ a2 ≥ 1 + 2 · a.
Hence P (2) is true.

• Let k ∈ N\{0, 1}. Suppose P (k) is true. Then (1 + a)k ≥ 1 + ka.
We verify that P (k + 1) is true:

(1 + a)k+1 = (1 + a)k(1 + a)

≥ (1 + ka)(1 + a) because 1 + a ≥ 0,

= 1 + (k + 1)a+ ka2

≥ 1 + (k + 1)a because ka2 ≥ 0.

Hence P (k + 1) is true.

By the Principle of Mathematical Induction, P (n) is true for any n ∈ N\{0, 1}.

7. Solution.

(a) (I) Suppose µ1, · · · , µn ∈ C. Then

∣∣∣∣∣∣
n∑

j=1

µj

∣∣∣∣∣∣ ≤
n∑

j=1

|µj |.

(II) Let µ1, µ2 be complex numbers.∣∣∣∣∣∣
2∑

j=1

µj

∣∣∣∣∣∣ = |µ1 + µ2| ≤ |µ1|+ |µ2| =
2∑

j=1

|µj |.

(III) Let k ∈ N\{0, 1}. Suppose P (k) is true.
(IV) Let ν1, · · · , νk, νk+1 be complex numbers. We have∣∣∣∣∣∣

k+1∑
j=1

νj

∣∣∣∣∣∣ =
∣∣∣∣∣∣

k∑
j=1

νj + νk+1

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

k∑
j=1

νj

∣∣∣∣∣∣+ |νk+1| ≤
k∑

j=1

|νj |+ |νk+1| ≤
k+1∑
j=1

|νj |

(b) Let ζ ∈ C. Suppose 0 < |ζ| < 1. Then we have∣∣∣∣∣
4060∑

k=1050

ζk

∣∣∣∣∣ ≤
4060∑

k=1050

∣∣ζk∣∣ = 4060∑
k=1050

|ζ|k = |ζ|1050 ·
3010∑
k=0

|ζ|k = |ζ|1050 · 1− |ζ|3011

1− |ζ|
<

|ζ|1050

1− |ζ|
.

The first inequality is a consequence of Statement (T ). The last inequality follows from |ζ|1050 > 0 and 0 <

|ζ|3011 < 1.
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8. (a) Hint. The appropriate proposition P (n) upon which mathematical induction is applied is:
Suppose b1, b2, · · · , bn are positive real numbers. Then (1+ b1)(1+ b2) · ... · (1+ bn) > 1+(b1+ b2+ · · ·+ bn).

(b) Hint. Be aware that whenever 0 < p < 1, the inequalities 0 < 1− p < 1 and 0 < (1− p)(1 + p) < 1 hold.

9. Solution.
(a) Let a, b, u, v be positive real numbers. Suppose u+ v = 1.

We have

a2u+ b2v − (au+ bv)2 = a2u+ b2v − a2u2 − b2v2 − 2abuv

= a2u(1− u) + b2v(1− v)− 2abuv = a2uv + b2uv − 2abuv = (a− b)2uv ≥ 0.

Then a2u+ b2v ≥ (au+ bv)2. Therefore
√
a2u+ b2v ≥ au+ bv.

(b) Denote by P (n) the statement below:
Suppose c1, c2, · · · , cn, x1, x2, · · · , xn be positive real numbers. Further suppose x1+x2+ · · ·+xn = 1. Then√

c12x1 + c22x2 + · · ·+ cn2xn ≥ c1x1 + c2x2 + · · ·+ cnxn.

• By the result in part (a), P (2) is true.
• Let k ∈ N\{0, 1}. Suppose P (k) is true.

We verify that P (k + 1) is true:
Suppose c1, c2, · · · , ck, ck+1, x1, x2, · · · , xk, xk+1 be positive real numbers. Further suppose x1 + x2 +
· · ·+ xk + xk+1 = 1.
Define t = x1 + x2 + · · ·+ xk. We have t > 0 and t+ xk+1 = 1.
For each j = 1, 2, · · · , k, define uj =

xj

t
. Note that u1, u2, · · · , uk are positive real numbers and

u1 + u2 + · · ·+ uk = 1.
Define d =

√
c12u1 + c22u2 + · · ·+ ck2uk. By definition, d2t = c1

2x1 + c2
2x2 + · · ·+ ck

2xk

By P (k), we have d ≥ c1u1 + c2u2 + · · ·+ ckuk.
Now √

c12x1 + c22x2 + · · ·+ ck2xk + ck+1
2xk+1 =

√
d2t+ ck+1

2xk+1

≥ dt+ ck+1xk+1 (by P (2))
= (c1u1 + c2u2 + · · ·+ ckuk)t+ ck+1xk+1

= c1x1 + c2x2 + · · ·+ ckxk + ck+1xk+1

Hence P (k + 1) is true.
By the Principle of Mathematical Induction, P (n) is true for any n ∈ N\{0, 1}.

10. (a) Answer.
(I) x is an irrational number

(II) it were true that
√
x was a rational number

(III) x is positive
(IV)

√
x was a rational number

(V) a rational number
(VI) an irrational number

(VII) assumption
(VIII) false

(b) Solution.
i. Let x be a positive real number, r be a positive rational number, and n be an integer greater than 1. Suppose

x is an irrational number.
Further suppose it were true that n

√
x+ r was a rational number.

Write y = n
√
x+ r. Note that yn − r = x.

Since y was a rational number, yn would be a rational number. Moreover, since r is a rational number,
yn − r would be a rational number.
Therefore x would be a rational number. But by assumption x is an irrational number. Contradiction arises.
Hence the assumption that n

√
x+ r was rational is false. n

√
x+ r is an irrational number in the first place.

ii. Let r, s, t ∈ R. Suppose r is a non-zero rational number and s is an irrational number.
Further suppose it were true that both rs+ t, rs− t were rational numbers.
Note that 2rs = (rs+ t) + (rs− t). Then 2rs would be a rational number.
Since 2, r are non-zero rational numbers, 2r is a non-zero rational number.
Note that s =

2rs

2r
. Then s would be a rational number.

But s is an irrational number.
Contradiction arises.
Hence at least one of rs+ t, rs− t is irrational.

5



11. (a) Answer.

(I) Suppose it were true that 3
√
3 was not irrational

(II) there would exist some m,n ∈ Z

(III) n ̸= 0 and m = n · 3
√
3

(IV) m3 would be divisible by 3

(V) Euclid’s Lemma
(VI) there would exist some k ∈ Z such that m = 3k

(VII) Note that 3k3 was an integer. Then n3 would be divisible by 3.
(VIII) 3 is a prime number

(IX) n would be divisible by 3

(X) m,n have no common factors other than −1, 1

(b) i. Solution.
Suppose it were true that 5

√
7 was not irrational.

Then 5
√
7 would be a rational number. There would exist some m,n ∈ Z such that n ̸= 0 and 5

√
7 =

m

n
.

Without loss of generality, we may assume that m,n have no common factors other than 1,−1.
We would have m = 5

√
7n. Then m5 = 7n5.

Now m5 was divisible by 7. Also note that 7 is a prime number. By Euclid’s Lemma, m would be divisible
by 7. Therefore there existed some k ∈ Z such that m = 7k.
Then we would have 75k5 = (7k)5 = m5 = 7n5. Therefore n5 = 74k5 = 7(73k5).
Now n5 was divisible by 7. Also note that 7 is a prime number. By Euclid’s Lemma, n would be divisible
by 7.
Therefore both m,n would be divisible by 7. 7 would be a common factor of m,n. Recall that we assumed
that m,n have no common factors other than −1, 1.
Contradiction arises.
Therefore the assumption that 5

√
7 was not irrational is false. 5

√
7 is irrational.

ii. ——
12. ——
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