
MATH1050 Exercise 4

1. Apply mathematical induction to justify each of the statements below:

(a) 1 · 2 + 2 · 5 + 3 · 8 + · · ·+ n(3n− 1) = n2(n+ 1) for any positive integer n.

(b) 1 +
1√
2
+

1√
3
+ · · ·+ 1√

n
≥

√
n whenever n is a positive integer.

(c) n2 < 2n−1 whenever n is an integer greater than 6.
(d) n(n2 + 2) is divisible by 3 for any n ∈ N.
(e) 7n(3n+ 1)− 1 is divisible by 9 for any n ∈ N.

2. Suppose {an}∞n=0 is an infinite sequence of complex numbers. Apply mathematical induction to prove the statements
below:

(a)
n∑

k=0

(ak+1 − ak) = an+1 − a0.

(b) Further suppose aj ̸= 0 for each j ∈ N. Then
n∏

k=0

ak+1

ak
=

an+1

a0
.

Remarks. The results proved here give the mechanism for a useful method for computing sums/products of
consecutive terms of sequences. This method is known as the Telescopic Method.

3. (a)♢ Apply mathematical induction to prove that
2n∑
k=1

(−1)k+1

k
=

2n∑
k=n+1

1

k
for any positive integer n.

(b)♣ In this part you are assumed to be familiar with calculus of one real variable.
i. Take for granted the validity of the result below about definite integrals (which looks ‘obvious’ in terms of the

‘ area interpretation’ for definite integration):
• Let a, b be real numbers, with a < b, and let f, g be real-valued functions of one real variable whose

domains contain the interval [a, b]. Suppose f, g are continuous on [a, b]. Further suppose that f(x) ≤
g(x) for any x ∈ [a, b], and also suppose that there exists some x0 ∈ [a, b] such that f(x0) < g(x0). Then∫ b

a

f(t)dt <

∫ b

a

g(t)dt.

Prove the statement (♯):

(♯) Let x be a real number. Suppose x > 1. Then ln

(
x+ 1

x

)
<

1

x
< ln

(
x

x− 1

)
.

ii. Applying the statement (♯), or otherwise, deduce that ln

(
2n+ 1

n+ 1

)
<

2n∑
k=n+1

1

k
< ln(2) for any positive

integer n.

iii. Hence, or otherwise, prove that the limit lim
n→∞

2n∑
k=1

(−1)k+1

k
exists and find its value.

Remark. We can further deduce lim
m→∞

m∑
k=1

(−1)k+1

k
exists and is equal to the limit lim

n→∞

2n∑
k=1

(−1)k+1

k
.
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4. Consider the statement (S):

(S) Let {an}∞n=0 be an infinite sequence of positive real numbers. Suppose
n∑

j=0

aj =

(
1 + an

2

)2

for each n ∈ N.

Then an = 2n+ 1 for each n ∈ N.
Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate passages so that
it gives an argument by mathematical induction for the statement (S).

Let {an}∞n=0 be an infinite sequence of positive real numbers. (I)
Denote by P (n) the proposition below:

(II)

• We verify that P (0) is true:

(III)

Hence P (0) is true.

• (IV)
We verify that P (k + 1) is true:

(V)

Therefore P (k + 1) is true.

(VI)

5. Consider the statement (Q):

• Let α, β are the two distinct roots of the polynomial f(x) = x2−x−1. Suppose {an}∞n=1 is the infinite sequence
of real numbers defined by {

a1 = 1, a2 = 3,

an+2 = an+1 + an if n ≥ 1
.

Then an = αn + βn for each positive integer n.
Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate passages so that
it gives an argument by mathematical induction for the statement (Q).

Let α, β are the two distinct roots of the polynomial f(x) = x2 − x − 1. Suppose {an}∞n=1 is the infinite
sequence of real numbers defined by{

a1 = 1, a2 = 3,

an+2 = an+1 + an if n ≥ 1
.

Denote by P (n) the proposition below:

an = αn + βn and an+1 = αn+1 + βn+1.

• We verify that P (1) is true:

We have a1 = (I) .

We also have a2 = (II) .

Hence P (1) is true.

• (III)

Then ak = αk + βk, and ak+1 = αk+1 + βk+1.
We verify that P (k + 1) is true:

We have ak+1 = (IV) by (V) immediately.
Now we verify that a(k+1)+1 = α(k+1)+1 + β(k+1)+1:

(VI)

Therefore P (k + 1) is true.

(VII)
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6. Apply mathematical induction to prove Bernoulli’s Inequality in the formulation below:

• Suppose a ∈ (−1,+∞). Then (1 + a)n ≥ 1 + na for any n ∈ N\{0, 1}.

7. (a) Here you may tacitly assume the result that |µ+ ν| ≤ |µ|+ |ν| for any µ, ν ∈ C. For the proof of this result, refer
to Assignment 3.
Consider the statement (T ):

(T ) Let n ∈ N\{0, 1}. Suppose µ1, µ2, · · · , µn ∈ C. Then

∣∣∣∣∣∣
n∑

j=1

µj

∣∣∣∣∣∣ ≤
n∑

j=1

|µj |.

Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate passages
so that it gives an argument by mathematical induction for the statement (T ).

Denote by P (n) the proposition below:

(I)

• We verify that P (2) is true:

(II)

Hence P (2) is true.

• (III)

We verify that P (k + 1) is true:

(IV)

Therefore P (k + 1) is true.

By the Principle of Mathematical Induction, P (n) is true for any n ∈ N\{0, 1}.

Remark. The statement (T ) is the General Triangle Inequality for complex numbers.
(b) Let ζ ∈ C. Suppose 0 < |ζ| < 1. By applying the results above, or otherwise, prove the inequality∣∣∣∣∣

4060∑
k=1050

ζk

∣∣∣∣∣ < |ζ|1050

1− |ζ|
.

8. (a)♢ Apply mathematical induction to prove the statement (♯):
(♯) Let n ∈ N\{0, 1}. Suppose b1, b2, · · · , bn are positive real numbers. Then (1 + b1)(1 + b2) · ... · (1 + bn) >

1 + (b1 + b2 + · · ·+ bn).
(b) By applying the result above, or otherwise, prove the statement (♭):

(♭) Let n ∈ N\{0, 1}. Suppose b1, b2, · · · , bn ∈ (0, 1). Then (1−b1)(1−b2)·...·(1−bn) <
1

1 + (b1 + b2 + · · ·+ bn)
.

Remark. These are two of Weierstrass’s Product Inequalities.

9. (a) Let a, b, u, v be positive real numbers. Suppose u+ v = 1.
Prove that

√
a2u+ b2v ≥ au+ bv.

(b)♣ Prove the statement below:
• Let n ∈ N\{0, 1}. Suppose c1, c2, · · · , cn, x1, x2, · · · , xn be positive real numbers. Further suppose x1+x2+

· · ·+ xn = 1. Then √
c12x1 + c22x2 + · · ·+ cn2xn ≥ c1x1 + c2x2 + · · ·+ cnxn.

10. In this question, you may tacitly assumed the results that the sum and the product of any pairs of rational numbers
are rational numbers, the difference of one rational number from another is a rational number, and the quotient of
one rational number by a non-zero rational number is also a rational number. For the proofs of these results, refer to
Assignment 1.

(a) Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate passages
so that it gives a proof-by-contradiction argument for the statement (I).
(I) Let x be a positive real number. Suppose x is an irrational number. Then

√
x is an irrational number.
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Let x be a positive real number.
Suppose (I) .
Further suppose (II) .
Since (III) , we have x = (

√
x)2.

Since (IV) , (
√
x)2 would be a rational number as well.

Therefore x would be (V) .
But x is assumed to be (VI) .
Contradiction arises.
Hence the (VII) that

√
x was rational is (VIII) . It follows that

√
x is an

irrational number in the first place.

(b) Apply proof-by-contradiction to justify each of the statements below.
i. Let x be a positive real number, r be a positive rational number, and n be an integer greater than 1. Suppose

x is an irrational number. Then n
√
x+ r is an irrational number.

ii.♢ Let r, s, t ∈ R. Suppose r is a non-zero rational number and s is an irrational number. Then at least one
of rs+ t, rs− t is an irrational number.

11. In this question you may take for granted the validity of Euclid’s Lemma:
• Let h, k, p ∈ Z. Suppose p is a prime number. Further suppose hk is divisible by p. Then at least one of h, k is

divisible by p.

(a) Fill in the blanks in the block below, all labelled by capital-letter Roman numerals, with appropriate passages
so that it gives a proof-by-contradiction argument for the statement (J).
(J) 3

√
3 is irrational.

(I) .

Then 3
√
3 would be a rational number.

Therefore (II) such that (III) .
Without loss of generality, we may assume that m,n have no common factors other than 1,−1.
Since m = n · 3

√
3, we would have m3 = 3n3.

Note that n3 was an integer. Then (IV) .
Now also note that 3 is a prime number. Then, by (V) , m would be divisible by 3.
Therefore (VI) .
Then we would have 27k3 = (3k)3 = m3 = 3n3. Therefore n3 = 9k3 = 3(3k3).

(VII)
Note that (VIII) . Then, by Euclid’s Lemma, (IX) .
Therefore both m,n would be divisible by 3. Hence 3 would be a common factor of m,n.
Recall that we have assumed that (X) .
Contradiction arises.
Therefore the assumption that 3

√
3 was not irrational is false. It follows that 3

√
3 is irrational in the

first place.

(b) Apply proof-by-contradiction to justify each of the statements below.
i. 5

√
7 is irrational.

ii.♢ Let p be a positive prime number, and Q be an integer greater than 1. The number Q
√
p is irrational.

12. Apply proof-by-contradiction to justify each of the statements below.

(a) Let a, b be real numbers. Suppose a > b > 0. Then
√
a2 − b2 +

√
2ab− b2 > a.

(b) Let a, b be real numbers. Suppose |a| ≤ 1 and |b| ≤ 1. Then
√
1− a2 +

√
1− b2 ≤ 2

√
1− (a+ b)2/4.

(c)♢ Let a, b be real numbers. Suppose ab ̸= 0. Then
∣∣∣∣∣a+

√
a2 + 2b2

2b

∣∣∣∣∣ < 1 or
∣∣∣∣∣a−

√
a2 + 2b2

2b

∣∣∣∣∣ < 1 .

(d)♢ Let a, b be real numbers. Suppose f(x) is the quadratic polynomial given by f(x) = x2+ax+b. Then |f(1)| ≥ 1

2

or |f(2)| ≥ 1

2
or |f(3)| ≥ 1

2
.

(Hint. Can you find a relation amongst f(1), f(2), f(3) which does not involve a, b?)
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