1. *Hint.* Always refer to the definitions for the respective notions of real part, imaginary part, complex conjugate and modulus.

2. (a)
$$
\omega^2 = i
$$
, $\omega^8 = 1$, $\omega^{2016} = \omega^{252 \cdot 8} = 1$.
(b) $2 + \sqrt{2}$.

3.
$$
\zeta + \bar{\zeta} = 2\text{Re}(\zeta) = 2a
$$
.
\n $\zeta^2 + \bar{\zeta}^2 = 4a^2 - 2r^2$.
\n $\zeta^3 + \bar{\zeta}^3 = 8a^3 - 6ar^2$.
\n $\zeta^4 + \bar{\zeta}^4 = 16a^4 - 16a^2r^2 + 2r^4$.
\n $\zeta^5 + \bar{\zeta}^5 = 32a^5 - 40a^3r^2 + 10ar^4$.
\n $\zeta^6 + \bar{\zeta}^6 = 64a^6 - 96a^4r^2 + 36a^2r^4 - 2r^6$.

Remark. One possible approach is to make good use of binomial expansions.

- 4. (a) $\text{Re}(\zeta) = 2k^2 3k 2$ and $\text{Im}(\zeta) = k^2 3k + 2$. i. One possibility is $k = 1$ and $\zeta = -3$. The other is $k = 2$ and $\zeta = 0$.
	- ii. One possibility is $k = -\frac{1}{2}$ $\frac{1}{2}$ and $\zeta = \frac{15}{4}$ $\frac{16}{4}i$. The other is $k = 2$ and $\zeta = 0$. iii. $k = -2$ and $\zeta = 12 + 12i$.

$$
5. \ \ \boxed{}
$$

6. (a) —
\n(b)
$$
z = \left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) w
$$
 or $z = \left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) w$.
\n7. (a) 1

$$
(b) \ \underline{\hspace{1cm}}
$$

$$
8. \ \underline{\hspace{1cm}}
$$

 $9. -$

10.
$$
a = -\frac{7}{2}
$$
 and $b = \frac{1}{2}$.

11. $a = -2$ and $b = 2$.

12. *Hint.* Make use of the relations between the coefficients of $f(x)$ (possibly together with the discriminant of $f(x)$) and the sum of roots, the product rules.

$$
13. (a) \underline{\hspace{1cm}}
$$

(b)
$$
z = 0
$$
 or $z = 1$ or $z = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$ or $z = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$.

14.
$$
z = 1 + \sqrt{3}i
$$
 or $z = 1 - \sqrt{3}i$.

15. The point on the circle *C* in the Argand plane which is of the minimum distance from p is $(2 + 2.5\sqrt{2}) + (-3 2.5\sqrt{2}$ *)i*.

The point on the circle *C* in the Argand plane which is of the maximum distance from *p* is $(2 - 2.5\sqrt{2}) + (-3 + 1)$ $2.5\sqrt{2}$ *)i*.

16. 2 + 3*i*.
\n17. (a)
$$
Im(z) = -\frac{1}{2}Re(z) + 5
$$
.
\n(b) $2\sqrt{5}$.
\n18. $-1 - i = \sqrt{2} \left(cos(-\frac{3\pi}{4}) + i sin(-\frac{3\pi}{4}) \right)$.
\n $1 - i = \sqrt{2} \left(cos(-\frac{\pi}{4}) + i sin(-\frac{\pi}{4}) \right)$.
\n $\frac{-1 - i}{(1 - i)^5} = \frac{i}{4}$
\n19. -3.

20. (a)
$$
p = \sqrt{3} + i
$$
.
\n $r = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$.
\n(b) $q = \frac{2\sqrt{3} - 1}{2} + \frac{2 + \sqrt{3}}{2}i$.

21. (a) *Geometric interpretation of the result on the Argand plane* The points α , σ both lies on the unit circle with centre 0. The distance between 1 and *σ* and the same as the distance between *α* and *σ*. $0, 1, \sigma$ are the three vertices of a isosceles triangle with base being the line segment joining 1 and σ . $0, \alpha, \sigma$ are the three vertices of an isosceles triangle with base being the line segment joining *α* and *σ*. These two isosceles triangle are congruent to each other. Hence the angle subtended by the line segment joining 0 and 1 and the line segment joining 0 and σ is the same as the angle subtended by the line segment joining 0 and σ and the line segment joining 0 and α . The line which joins 0 and σ bisects the angle subtended by the line segment joining 0 and 1 and the line segment joining 0 and *α*.

(b) i.
$$
\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i, -\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i
$$
.
\nii. $\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i, -\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$.
\niii. $\frac{1}{2} + \frac{\sqrt{3}}{2}i, -\frac{1}{2} - \frac{\sqrt{3}}{2}i$.
\niv. $\frac{\sqrt{3}}{2} + \frac{\sqrt{1}}{2}i, -\frac{\sqrt{3}}{2} - \frac{\sqrt{1}}{2}i$.
\nv. $\frac{\sqrt{\sqrt{10} + 1}}{\sqrt{2}} + \frac{\sqrt{\sqrt{10} - 1}}{\sqrt{2}}i$,
\n $-\frac{\sqrt{\sqrt{10} + 1}}{\sqrt{2}} - \frac{\sqrt{\sqrt{10} - 1}}{\sqrt{2}}i$.
\nvi. $\frac{\sqrt{\sqrt{2} + 1}}{\sqrt{2}} + \frac{\sqrt{\sqrt{2} - 1}}{\sqrt{2}}i$,
\n $-\frac{\sqrt{\sqrt{2} + 1}}{\sqrt{2}} - \frac{\sqrt{\sqrt{2} - 1}}{\sqrt{2}}i$.

22. (a) $z = 0$ or $z = -4i$.

(b)
$$
z = -3
$$
 or $z = 2i$.
\n(c) $z = (1 + \sqrt{2})i$ or $z = (1 - \sqrt{2})i$.
\n(d) $z = 2 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$ or $z = 2 + \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i$.
\n(e) $z = 3 + i$ or $z = -1 + i$.
\n(f) $z = 2i$ or $z = 3i$.
\n23. (a) i. $\frac{3\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$, $-\frac{3\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$.
\nii. $\frac{3\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$, $-\frac{3\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$.

 $\frac{x}{2}$ +

 $\frac{\sqrt{2}}{2}i$ or $x = -\frac{3\sqrt{2}}{2}$

 $\frac{2}{2}i$.

2 *−*

√ 2

 $\frac{y}{2}$ *i* or *x* =

2 *−*

 $\frac{1}{2}$ +

√ 2

(b) $x = \frac{3\sqrt{2}}{2}$

$$
\frac{3\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i \text{ or } x = -\frac{3\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i.
$$

24. (a) 2.
(b) $\sqrt{2} + \sqrt{2}i$ or $\sqrt{2} - \sqrt{2}i$ or $-\sqrt{2} + \sqrt{2}i$ or $-\sqrt{2} - \sqrt{2}i$.
25. —
26. (a) $A = 2$.
(b) i. 0.
ii. $B = C = D = 1$.
27. —
28. —
29. —