MATH1050 Exercise 3 (Answers and solution)

1. Solution.

- (a) Let ζ be a complex numbers. We have $\zeta \overline{\zeta} = (\operatorname{Re}(\zeta) + i\operatorname{Im}(\zeta))(\operatorname{Re}(\zeta) i\operatorname{Im}(\zeta)) = (\operatorname{Re}(\zeta))^2 + (\operatorname{Im}(\zeta))^2 = |\zeta|^2$.
- (b) Let z, w be complex numbers. Suppose $w \neq 0$. $\frac{z}{w} = \frac{z\bar{w}}{w\bar{w}} = \frac{z\bar{w}}{|w|^2}$.

2. Solution.

Let z, w be complex numbers.

(a) $|zw|^2 = (zw)\overline{(zw)} = zw\overline{z}\overline{w} = (z\overline{z})(w\overline{w}) = |z|^2|w|^2$. Since $|z| \ge 0$, $|w| \ge 0$ and $|zw| \ge 0$, we have |zw| = |z||w|.

(b) Suppose $z \neq 0$ and $w \neq 0$, and θ, φ are respective arguments of z, w. Then $z = |z|(\cos(\theta) + i\sin(\theta))$ and $w = |w|(\cos(\varphi) + i\sin(\varphi))$. Therefore

$$zw = [|z|(\cos(\theta) + i\sin(\theta))][|w|(\cos(\varphi) + i\sin(\varphi))] \\ = |z||w|[(\cos(\theta)\cos(\varphi) - \sin(\theta)\sin(\varphi)) + i(\sin(\theta)\cos(\varphi) + \cos(\theta)\sin(\varphi))] \\ = |zw|(\cos(\theta + \varphi) + i\sin(\theta + \varphi)).$$

3. Solution.

Let
$$\omega = \frac{\sqrt{3} + i}{2}$$
.
(a) $\omega^2 = \frac{1 + \sqrt{3}i}{2}, \ \omega^3 = i, \ \omega^{11} = \frac{\sqrt{3} - i}{2}, \ \omega^{12} = 1$.
(b) $\sum_{k=0}^{2230} \omega^{k+1} = \omega \sum_{k=0}^{2230} \omega^k = \omega \cdot \frac{1 - \omega^{2231}}{1 - \omega} = \omega \cdot \frac{1 - \omega^{-1}}{1 - \omega} = -1$.

4. Solution.

Let a, b, c be real numbers. Suppose $a^2 + b^2 + c^2 = 1$ and $c \neq 1$. Define $z = \frac{a+bi}{1-c}$

(a)
$$|z|^2 = z\bar{z} = \frac{a+bi}{1-c} \cdot \frac{a-bi}{1-c} = \frac{a^2+b^2}{(1-c)^2} = \frac{1-c^2}{(1-c)^2} = \frac{1+c}{1-c}.$$

(b) We have $|z|^2 = \frac{1+c}{1-c}.$
Then $c = \frac{|z|^2 - 1}{|z|^2 + 1} = \frac{z\bar{z} - 1}{z\bar{z} + 1}.$
Since $z = \frac{a+bi}{1-c}$, we have $\operatorname{Re}(z) = \frac{a}{1-c}$ and $\operatorname{Im}(z) = \frac{b}{1-c}.$
Therefore $a = (1-c)\operatorname{Re}(z) = \left(1 - \frac{z\bar{z} - 1}{z\bar{z} + 1}\right) \cdot \frac{z+\bar{z}}{2} = \frac{z+\bar{z}}{z\bar{z} + 1}$
Also, $b = (1-c)\operatorname{Im}(z) = \left(1 - \frac{z\bar{z} - 1}{z\bar{z} + 1}\right) \cdot \frac{z-\bar{z}}{2i} = \frac{z-\bar{z}}{i(z\bar{z} + 1)}.$

5. Solution.

(a) Suppose z, w are complex numbers.

Then $|z + w|^2 = |z|^2 + |w|^2 + z\bar{w} + \bar{z}w$. Also, $|z - w|^2 = |z + (-w)|^2 = |z|^2 + |-w|^2 + z\overline{(-w)} + \overline{z}(-w) = |z|^2 + |w|^2 - z\overline{w} - \overline{z}w.$ Then $|z+w|^2 + |z-w|^2 = 2|z|^2 + 2|w|^2 + z\bar{w} + \bar{z}w - z\bar{w} - \bar{z}w = 2|z|^2 + 2|w|^2$.

(b) i. Suppose r, s, t are complex numbers.

1. Suppose r, s, t are complex numbers. Then $|2r - s - t|^2 = |(r - s) + (r - t)|^2 = 2|r - s|^2 + 2|r - t|^2 - |(r - s) - (r - t)|^2 = 2|r - s|^2 + 2|t - r|^2 - |s - t|^2$. Similarly, $|2s - t - r|^2 = 2|s - t|^2 + 2|r - s|^2 - |t - r|^2$ and $|2t - r - s|^2 = 2|t - r|^2 + 2|s - t|^2 - |r - s|^2$. Therefore $|2r - s - t|^2 + |2s - t - r|^2 + |2t - r - s|^2 = 3(|s - t|^2 + |t - r|^2 + |r - s|^2)$. ii. Let ζ, α, β be complex numbers. Suppose $\zeta^2 = \alpha^2 + \beta^2$. Then $(\zeta + \alpha)(\zeta - \alpha) = \zeta^2 - \alpha^2 = \beta^2$. We have

We have

$$\begin{aligned} (|\zeta + \alpha| + |\zeta - \alpha|)^2 &= |\zeta + \alpha|^2 + |\zeta - \alpha|^2 + 2|\zeta + \alpha||\zeta - \alpha| \\ &= 2|\zeta|^2 + 2|\alpha|^2 + 2|(\zeta + \alpha)(\zeta - \alpha)| \\ &= 2|\zeta|^2 + 2|\alpha|^2 + 2|\beta^2| \\ &= 2|\zeta|^2 + 2|\alpha|^2 + 2|\beta|^2 \end{aligned}$$

Modifying the above argument (by interchanging the roles played by α and β), we have $(|\zeta + \beta| + |\zeta - \beta|)^2 = 2|\zeta|^2 + 2|\beta|^2 + 2|\alpha|^2$.

Therefore $(|\zeta + \alpha| + |\zeta - \alpha|)^2 = (|\zeta + \beta| + |\zeta - \beta|)^2$. Note that $|\zeta + \alpha| + |\zeta - \alpha| \ge 0$ and $|\zeta + \beta| + |\zeta - \beta| \ge 0$. Then $|\zeta + \alpha| + |\zeta - \alpha| = |\zeta + \beta| + |\zeta - \beta|$.

6. Solution.

Let $z \in \mathbb{C}$. Suppose 4|z+1| = |z+16|. Then $16(z+1)(\overline{z}+1) = 16(z+1)\overline{(z+1)} = 16|z+1|^2 = |z+16|^2 = (z+16)\overline{(z+16)} = (z+16)(\overline{z}+16)$.

Now $16(z\overline{z} + z + \overline{z} + 1) = z\overline{z} + 16z + 16\overline{z} + 16^2$.

Therefore $15z\overline{z} = 15 \cdot 16$. We have $|z|^2 = z\overline{z} = 16$. Hence |z| = 4. z lies on the circle with centre at 0 and radius 4.

Write $\mu = 1 + i$, $\nu = 3 - i$.

(a) Note that $\frac{\mathsf{Im}(\nu) - \mathsf{Im}(\mu)}{\mathsf{Re}(\nu) - \mathsf{Re}(\mu)} = \frac{-1 - 1}{3 - 1} = -1.$ Let $\eta \in \mathbb{C}$.

 η lies on the ('infinite') straight line joining μ, ν

 $\begin{array}{ll} \mathrm{iff} & \mathsf{Im}(\eta) - \mathsf{Im}(\mu) = \frac{\mathsf{Im}(\nu) - \mathsf{Im}(\mu)}{\mathsf{Re}(\nu) - \mathsf{Re}(\mu)} \cdot (\mathsf{Re}(\eta) - \mathsf{Re}(\mu)) \\ \mathrm{iff} & \mathsf{Im}(\eta) - 1 = (-1) \cdot (\mathsf{Re}(\eta) - 1) \\ \mathrm{iff} & \mathsf{Re}(\eta) + \mathsf{Im}(\eta) - 2 = 0 \end{array}$

(b) Consider the curve C on the Argand plane defined by the equation $|z - \mu| = |z - \nu|$.

i. Let $\zeta \in \mathbb{C}$. Note that

$$\begin{aligned} |\zeta - \mu|^2 &= (\zeta - \mu)\overline{(\zeta - \mu)} = \zeta \bar{\zeta} - \bar{\mu}\zeta - \mu \bar{\zeta} + \mu \bar{\mu} = |\zeta|^2 - (1 - i)\zeta - (1 + i)\bar{\zeta} + 2\\ |\zeta - \nu|^2 &= (\zeta - \nu)\overline{(\zeta - \nu)} = \zeta \bar{\zeta} - \bar{\nu}\zeta - \nu \bar{\zeta} + \nu \bar{\nu} = \zeta \bar{\zeta} + (-3 - i)\zeta + (-3 + i)\bar{\zeta} + 10. \end{aligned}$$

We have

$$\begin{split} |z-1-i| &= |z-3+i| \quad \text{iff} \quad |z-1-i|^2 = |z-3+i|^2 \\ &\text{iff} \quad (2+2i)\zeta + (2-2i)\bar{\zeta} - 8 = 0 \\ &\text{iff} \quad 2(\zeta + \bar{\zeta}) + 2i(\zeta - \bar{\zeta}) - 8 = 0 \\ &\text{iff} \quad \frac{1}{2}(\zeta + \bar{\zeta}) - \frac{1}{2i}(\zeta - \bar{\zeta}) - 2 = 0 \\ &\text{iff} \quad \mathsf{Re}(\zeta) - \mathsf{Im}(\zeta) - 2 = 0 \end{split}$$

ii. The equation of the 'infinite' straight line ℓ joining μ, ν is given by $\operatorname{Re}(z) + \operatorname{Im}(z) - 2 = 0$ with unknown z in the complex numbers.

The curve C is a straight line whose equation is given by $\operatorname{Re}(z) - \operatorname{Im}(z) - 2 = 0$ with unknown z in the complex numbers. The slope of ℓ is -1, and the slope of C is 1. Therefore the lines ℓ , C are perpendicular to each other.

The slope of ℓ is -1, and the slope of C is 1. Therefore the lines ℓ, C are perpendicular to each other ℓ and C intersect each other at the point 2.

Note that $|2 - \mu| = \sqrt{2} = |2 - \nu|$. Hence 2 is the mid-point of the line segment joining μ, ν .

It follows that C is the perpendicular bisector of the line segment joining μ, ν .

8. Answer.

z = 2 or z = 4 + 2i.

Remark. The curve described by the equation |z - 2 - 2i| = 2 is the circle with centre 2 + 2i and radius 2. It is tangent to the real axis at 2 and the imaginary axis at 2i.

The curve described by the equation |z - 4 + 2i| = |z - 2i| is the 'infinite' straight line which perpendicularly bisects the line segment joining 4 - 2i and 2i.

The latter passes the point 2, which lies on the former, and by symmetry (and perpendicularity), passes through the point 4 + 2i on the former.

9. Answer.

(a) 2+2i, 4i (b) $\sqrt{2}$ (c) -1+i

Remark. The curve described by the equation |z - 2i| = 2 is the circle with centre 2i and radius 2. It is tangent to the real axis at 0.

The curve described by the equation |z - 4 - 4i| = |z| is the 'infinite' straight line which perpendicularly bisects the line segment joining 4 + 4i and 0.

They intersect each other at the points 2 + 2i and 4i only.

Because $(S_{\alpha,r})$ has exactly two solutions, the curve $|z - \alpha| = r$, which describes the circle with centre α and with radius r, must pass through the points 2 + 2i and 4i, no matter which values α , r take. Then by symmetry, α lies on the 'infinite' straight line which is the perpendicular bisector for the line segment joining 2 + 2i and 4i.

10. Solution.

Let ω be a complex number. Suppose $|\omega| = 1$ and $\operatorname{Im}(\omega) \ge 0$. Further suppose $\omega^2 + \frac{5}{\omega} - 2$ is purely imaginary. There exists some $\theta \in \mathbb{R}$ such that $\omega = |\omega|(\cos(\theta) + i\sin(\theta))$. Since $|\omega| = 1$, we have $\omega = \cos(\theta) + i\sin(\theta)$. Then $\omega^2 = \cos(2\theta) + i\sin(2\theta)$ and $\frac{1}{\omega} = \bar{\omega} = \cos(\theta) - i\sin(\theta)$. Then $\omega^2 + \frac{5}{\omega} - 2 = (\cos(2\theta) + 5\cos(\theta) - 2) + i(\sin(2\theta) - 5\sin(\theta))$ Since $\omega^2 + \frac{5}{\omega} - 2$ is purely imaginary, we have $0 = \operatorname{Re}\left(\omega^2 + \frac{5}{\omega} - 2\right) = \cos(2\theta) + 5\cos(\theta) - 2 = 2\cos^2(\theta) + 5\cos(\theta) - 3$. Then $(2\cos(\theta) - 1)(\cos(\theta) + 3) = 0.$ Therefore $\cos(\theta) = \frac{1}{2}$ or $\cos(\theta) = -3$. The possibility ' $\cos(\theta) = -3$ ' is rejected. Then $\cos(\theta) = \frac{1}{2}$. Therefore $\sin(\theta) = \frac{\sqrt{3}}{2}$ or $\sin(\theta) = -\frac{\sqrt{3}}{2}$. Since $\operatorname{Im}(\omega) \ge 0$, we have $\operatorname{Im}(\omega) = \sin(\theta) = \frac{\sqrt{3}}{2}$. Therefore $\omega = \cos(\theta) + i\sin(\theta) = \frac{1}{2} + \frac{\sqrt{3}}{2}i$. 11. Answer.

(a) 1

(b) *Hint*. Be aware that
$$|\lambda| = 1$$
 and $\overline{\lambda} = \frac{1}{\lambda}$. Also be aware that $\lambda^2 = \cos(2\alpha) + i\sin(2\alpha)$.

(c) -

12. Solution.

- i. Let z be a complex number. (a) Note that $|z|^2 - |\mathsf{Re}(z)|^2 = |z|^2 - (\mathsf{Re}(z))^2 = (\mathsf{Im}(z))^2 \ge 0.$ Then $|z|^2 \ge (|\mathsf{Re}(z)|)^2$. Note that $|z| \ge 0$ and $|\mathsf{Re}(z)| \ge 0$. Therefore $|z| \ge |\mathsf{Re}(z)|$
 - Suppose $|z| = |\operatorname{Re}(z)|$. Then $(\operatorname{Im}(z))^2 = 0$. Therefore $\operatorname{Im}(z) = 0$. Hence z is real.
 - Suppose z is real. Then $z = \operatorname{Re}(z)$. Therefore $|z| = |\operatorname{Re}(z)|$.
 - ii. Let z be a complex number. Define $w = -i\hat{z}$. We have $w = -i(\operatorname{Re}(z) + i\operatorname{Im}(z)) = \operatorname{Im}(z) - i\operatorname{Re}(z)$. Then $\operatorname{Re}(w) = \operatorname{Im}(z)$ and $\operatorname{Im}(w) = -\operatorname{Re}(z)$. We have $|z| = |-iz| = |w| > |\mathsf{Re}(w)| = |\mathsf{Im}(z)|$. Equality holds iff w is real. The latter holds iff z is purely imaginary.
- (b) Let u, v be complex numbers.

By the result in part (a), $|\mathsf{Re}(u\overline{v})| \le |u\overline{v}| = |u||\overline{v}| = |u||v|$.

- Suppose $|\mathsf{Re}(u\bar{v})| \leq |u||v|$. Then, by the result in part (a), $u\bar{v}$ is real.
 - * (Case 1.) Suppose v = 0. Then $0 \cdot u + 1 \cdot v = 0$, and $0, 1 \in \mathbb{R}$ with $1 \neq 0$.
 - (Case 2.) Suppose $v \neq 0$.
 - Write $p = |v|^2$, $q = -u\bar{v}$. Note that $p, q \in \mathbb{R}$, and $p \neq 0$.
 - We have $pu = |v|^2 u = u\overline{v}v = -qv$. Then pu + qv = 0.
- Suppose there exist some $p, q \in \mathbb{R}$ such that pu + qv = 0 and p, q are not both zero. Without loss of generality, assume $p \neq 0$. Write r = -q/p. We have u = rv. Then $\mathsf{Im}(u\bar{v}) = \mathsf{Im}(rv\bar{v}) = \mathsf{Im}(r|v|^2) = 0$. Therefore $u\bar{v}$ is real. Hence $\mathsf{Re}(u\bar{v}) = |u||v|$.

i. Let z, w be complex numbers. (c)

Then |z|Since |z|

and

$$\begin{aligned} (|z| + |w|)^2 - |z + w|^2 \\ &= |z|^2 + |w|^2 + 2|z||w| - (z + w)\overline{(z + w)} = |z|^2 + |w|^2 + 2|z||w| - (z + w)(\overline{z} + \overline{w}) \\ &\vdots \\ &= |z|^2 + |w|^2 + 2|z||w| - (|z|^2 + |w|^2 + 2\operatorname{Re}(z\overline{w})) \\ &= 2(|z||w| - \operatorname{Re}(z\overline{w})) \ge 2(|z||w| - |\operatorname{Re}(z\overline{w})|) \ge 0. \end{aligned}$$
Then $|z + w|^2 \le (|z| + |w|)^2$.
Since $|z + w|, |z|, |w|$ are all non-negative, we have $|z + w| \le |z| + |w|$.
Note that $|z + w| = |z| + |w|$ iff $(\operatorname{Re}(z\overline{w}) = |\operatorname{Re}(z\overline{w})|$ and $|\operatorname{Re}(z\overline{w})| = |z||w|)$.
• Suppose $|z + w| = |z| + |w|$.
Then $\operatorname{Re}(z\overline{w}) = |\operatorname{Re}(z\overline{w})|$ and $|\operatorname{Re}(z\overline{w})| = |z||w|$.
Since $|\operatorname{Re}(z\overline{w})| = |z||w|$, by the result in part (b), there exist some real numbers p, q such that $pz + qw =$
and p, q are not both zero.
Without loss of generality, assume $p \neq 0$.
Define $s = p^2$ and $t = -pq$. Note that $s > 0$.

0

We have $sz = p^2 z = -pqw = tw$.

Since $\operatorname{Re}(z\bar{w}) = |\operatorname{Re}(z\bar{w})|$, $\operatorname{Re}(z\bar{w})$ is a non-negative real number.

Now $0 \leq s \operatorname{Re}(z\bar{w}) = \operatorname{Re}(sz\bar{w}) = \operatorname{Re}(tw\bar{w}) = \operatorname{Re}(t|w|^2) = t|w|^2$. Since $|w|^2 \geq 0$, we have $t \geq 0$.

• Suppose there exist some non-negative real numbers s, t such that sz = tw and s, t are not both zero. Without loss of generality, assume s > 0.

We have z = tw/s. Then $z\overline{w} = \frac{t}{s}|w|^2 > 0$.

Therefore $\operatorname{\mathsf{Re}}(z\bar{w}) = \frac{t}{\varsigma} |w|^2 = |\operatorname{\mathsf{Re}}(z\bar{w})|.$

Note that sz - tw = 0. Then by the result in part (b), we have $|\operatorname{Re}(z\overline{w})| \le |z||w|$. Hence $(\operatorname{Re}(z\overline{w}) = |\operatorname{Re}(z\overline{w})|$ and $|\operatorname{Re}(z\overline{w})| = |z||w|)$. Therefore |z + w| = |z| + |w|.

ii. Suppose u, v are complex numbers.

We have $|u| = |(u - v) + v| \le |u - v| + |v|$. Then $|u| - |v| \le |u - v|$.

We also have $|v| = |u + (v - u)| \le |u| + |v - u| = |u| + |u - v|$. Then $|u| - |v| \ge -|u - v|$.

Therefore $-|u - v| \le |u| - |v| \le |u - v|$. Hence $||u| - |v|| \le |u - v|$.

||u| - |v|| = |u - v| iff (|u| = |u - v| + |v| or |v| = |u| + |v - u|).

- Suppose ||u| |v|| = |u v|. Then |u| = |u - v| + |v| or |v| = |u| + |v - u|. Without loss of generality, assume |u| = |u - v| + |v|. Then there exist some non-negative real numbers s, t such that s(u - v) = tv and s, t are not both zero. Define h = s and k = s + t. Note that h, k are non-negative real numbers. If s = 0 then t > 0 and k = s + t > 0. If t = 0 then h = s > 0. Hence h, k are not both zero. We have hu = su = (s + t)v = kv.
- Suppose there exist some non-negative real numbers h, k such that hu = kv and h, k are not both zero. Without loss of generality, assume $|u| \ge |v|$.

We have h|u| = |hu| = |kv| = k|v|. Then $h \le k$. Since $h \ge 0$ and $k \ge 0$ and h, k are not both zero, we have $k \ge 0$.

Define s = h and t = k - h. Then s > 0, and $t \ge 0$.

We have su = hu = kv = (k - h)v + hv = tv + sv. Then s(u - v) = tv. Therefore by the result in part (c.i), we have |u| = |(u - v) + v| = |u - v| + |v|. Hence |u - v| = |u| - |v| = |u| - |v|

