
MATH1050 Exercise 3 (Answers and solution)

1. Solution.
(a) Let ζ be a complex numbers. We have ζζ̄ = (Re(ζ) + iIm(ζ))(Re(ζ)− iIm(ζ)) = (Re(ζ))2 + (Im(ζ))2 = |ζ|2.

(b) Let z, w be complex numbers. Suppose w ̸= 0. z

w
=

zw̄

ww̄
=

zw̄

|w|2
.

2. Solution.
Let z, w be complex numbers.

(a) |zw|2 = (zw)(zw) = zwz̄w̄ = (zz̄)(ww̄) = |z|2|w|2.
Since |z| ≥ 0, |w| ≥ 0 and |zw| ≥ 0, we have |zw| = |z||w|.

(b) Suppose z ̸= 0 and w ̸= 0, and θ, φ are respective arguments of z, w.
Then z = |z|(cos(θ) + i sin(θ)) and w = |w|(cos(φ) + i sin(φ)).
Therefore

zw = [|z|(cos(θ) + i sin(θ))][|w|(cos(φ) + i sin(φ))]

= |z||w|[(cos(θ) cos(φ)− sin(θ) sin(φ)) + i(sin(θ) cos(φ) + cos(θ) sin(φ))]

= |zw|(cos(θ + φ) + i sin(θ + φ)).

3. Solution.

Let ω =

√
3 + i

2
.

(a) ω2 =
1 +

√
3i

2
, ω3 = i, ω11 =

√
3− i

2
, ω12 = 1.

(b)
2230∑
k=0

ωk+1 = ω

2230∑
k=0

ωk = ω · 1− ω2231

1− ω
= ω · 1− ω−1

1− ω
= −1.

4. Solution.

Let a, b, c be real numbers. Suppose a2 + b2 + c2 = 1 and c ̸= 1. Define z =
a+ bi

1− c
.

(a) |z|2 = zz̄ =
a+ bi

1− c
· a− bi

1− c
=

a2 + b2

(1− c)2
=

1− c2

(1− c)2
=

1 + c

1− c
.

(b) We have |z|2 =
1 + c

1− c
.

Then c =
|z|2 − 1

|z|2 + 1
=

zz̄ − 1

zz̄ + 1
.

Since z =
a+ bi

1− c
, we have Re(z) = a

1− c
and Im(z) =

b

1− c
.

Therefore a = (1− c)Re(z) =
(
1− zz̄ − 1

zz̄ + 1

)
· z + z̄

2
=

z + z̄

zz̄ + 1
.

Also, b = (1− c)Im(z) =

(
1− zz̄ − 1

zz̄ + 1

)
· z − z̄

2i
=

z − z̄

i(zz̄ + 1)
.

5. Solution.

(a) Suppose z, w are complex numbers.
Then |z + w|2 = |z|2 + |w|2 + zw̄ + z̄w.
Also, |z − w|2 = |z + (−w)|2 = |z|2 + | − w|2 + z(−w) + z̄(−w) = |z|2 + |w|2 − zw̄ − z̄w.
Then |z + w|2 + |z − w|2 = 2|z|2 + 2|w|2 + zw̄ + z̄w − zw̄ − z̄w = 2|z|2 + 2|w|2.

(b) i. Suppose r, s, t are complex numbers.
Then |2r− s− t|2 = |(r− s)+ (r− t)|2 = 2|r− s|2+2|r− t|2−|(r− s)− (r− t)|2 = 2|r− s|2+2|t− r|2−|s− t|2.
Similarly, |2s− t− r|2 = 2|s− t|2 + 2|r − s|2 − |t− r|2 and |2t− r − s|2 = 2|t− r|2 + 2|s− t|2 − |r − s|2.
Therefore |2r − s− t|2 + |2s− t− r|2 + |2t− r − s|2 = 3(|s− t|2 + |t− r|2 + |r − s|2).

ii. Let ζ, α, β be complex numbers. Suppose ζ2 = α2 + β2. Then (ζ + α)(ζ − α) = ζ2 − α2 = β2.
We have

(|ζ + α|+ |ζ − α|)2 = |ζ + α|2 + |ζ − α|2 + 2|ζ + α||ζ − α|
= 2|ζ|2 + 2|α|2 + 2|(ζ + α)(ζ − α)|
= 2|ζ|2 + 2|α|2 + 2|β2|
= 2|ζ|2 + 2|α|2 + 2|β|2
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Modifying the above argument (by interchanging the roles played by α and β), we have (|ζ + β|+ |ζ − β|)2 =
2|ζ|2 + 2|β|2 + 2|α|2.
Therefore (|ζ + α|+ |ζ − α|)2 = (|ζ + β|+ |ζ − β|)2.
Note that |ζ + α|+ |ζ − α| ≥ 0 and |ζ + β|+ |ζ − β| ≥ 0. Then |ζ + α|+ |ζ − α| = |ζ + β|+ |ζ − β|.

6. Solution.
Let z ∈ C. Suppose 4|z+1| = |z+16|. Then 16(z+1)(z̄+1) = 16(z+1)(z + 1) = 16|z+1|2 = |z+16|2 = (z+16)(z + 16) =
(z + 16)(z̄ + 16).
Now 16(zz̄ + z + z̄ + 1) = zz̄ + 16z + 16z̄ + 162.
Therefore 15zz̄ = 15 · 16. We have |z|2 = zz̄ = 16. Hence |z| = 4. z lies on the circle with centre at 0 and radius 4.

7. Solution.
Write µ = 1 + i, ν = 3− i.

(a) Note that Im(ν)− Im(µ)

Re(ν)− Re(µ) =
−1− 1

3− 1
= −1.

Let η ∈ C.

η lies on the (‘infinite’) straight line joining µ, ν

iff Im(η)− Im(µ) =
Im(ν)− Im(µ)

Re(ν)− Re(µ) · (Re(η)− Re(µ))

iff Im(η)− 1 = (−1) · (Re(η)− 1)

iff Re(η) + Im(η)− 2 = 0

(b) Consider the curve C on the Argand plane defined by the equation |z − µ| = |z − ν|.
i. Let ζ ∈ C. Note that

|ζ − µ|2 = (ζ − µ)(ζ − µ) = ζζ̄ − µ̄ζ − µζ̄ + µµ̄ = |ζ|2 − (1− i)ζ − (1 + i)ζ̄ + 2

|ζ − ν|2 = (ζ − ν)(ζ − ν) = ζζ̄ − ν̄ζ − νζ̄ + νν̄ = ζζ̄ + (−3− i)ζ + (−3 + i)ζ̄ + 10.

We have

|z − 1− i| = |z − 3 + i| iff |z − 1− i|2 = |z − 3 + i|2

iff (2 + 2i)ζ + (2− 2i)ζ̄ − 8 = 0

iff 2(ζ + ζ̄) + 2i(ζ − ζ̄)− 8 = 0

iff 1

2
(ζ + ζ̄)− 1

2i
(ζ − ζ̄)− 2 = 0

iff Re(ζ)− Im(ζ)− 2 = 0

ii. The equation of the ‘infinite’ straight line ℓ joining µ, ν is given by Re(z) + Im(z) − 2 = 0 with unknown z in
the complex numbers.
The curve C is a straight line whose equation is given by Re(z)− Im(z)− 2 = 0 with unknown z in the complex
numbers.
The slope of ℓ is −1, and the slope of C is 1. Therefore the lines ℓ, C are perpendicular to each other.
ℓ and C intersect each other at the point 2.
Note that |2− µ| =

√
2 = |2− ν|. Hence 2 is the mid-point of the line segment joining µ, ν.

It follows that C is the perpendicular bisector of the line segment joining µ, ν.
8. Answer.

z = 2 or z = 4 + 2i.
Remark. The curve described by the equation |z − 2 − 2i| = 2 is the circle with centre 2 + 2i and radius 2. It is
tangent to the real axis at 2 and the imaginary axis at 2i.
The curve described by the equation |z− 4+ 2i| = |z− 2i| is the ‘infinite’ straight line which perpendicularly bisects the
line segment joining 4− 2i and 2i.
The latter passes the point 2, which lies on the former, and by symmetry (and perpendicularity), passes through the
point 4 + 2i on the former.

9. Answer.
(a) 2 + 2i, 4i (b)

√
2 (c) −1 + i

Remark. The curve described by the equation |z − 2i| = 2 is the circle with centre 2i and radius 2. It is tangent to
the real axis at 0.
The curve described by the equation |z − 4− 4i| = |z| is the ‘infinite’ straight line which perpendicularly bisects the line
segment joining 4 + 4i and 0.
They intersect each other at the points 2 + 2i and 4i only.
Because (Sα,r) has exactly two solutions, the curve |z−α| = r, which describes the circle with centre α and with radius r,
must pass through the points 2+ 2i and 4i, no matter which values α, r take. Then by symmetry, α lies on the ‘infinite’
straight line which is the perpendicular bisector for the line segment joining 2 + 2i and 4i.
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10. Solution.

Let ω be a complex number. Suppose |ω| = 1 and Im(ω) ≥ 0. Further suppose ω2 +
5

ω
− 2 is purely imaginary.

There exists some θ ∈ R such that ω = |ω|(cos(θ) + i sin(θ)).

Since |ω| = 1, we have ω = cos(θ) + i sin(θ). Then ω2 = cos(2θ) + i sin(2θ) and 1

ω
= ω̄ = cos(θ)− i sin(θ).

Then ω2 +
5

ω
− 2 = (cos(2θ) + 5 cos(θ)− 2) + i(sin(2θ)− 5 sin(θ))

Since ω2 +
5

ω
− 2 is purely imaginary, we have 0 = Re

(
ω2 +

5

ω
− 2

)
= cos(2θ) + 5 cos(θ)− 2 = 2 cos2(θ) + 5 cos(θ)− 3.

Then (2 cos(θ)− 1)(cos(θ) + 3) = 0.

Therefore cos(θ) =
1

2
or cos(θ) = −3. The possibility ‘cos(θ) = −3’ is rejected. Then cos(θ) =

1

2
.

Therefore sin(θ) =

√
3

2
or sin(θ) = −

√
3

2
. Since Im(ω) ≥ 0, we have Im(ω) = sin(θ) =

√
3

2
.

Therefore ω = cos(θ) + i sin(θ) =
1

2
+

√
3

2
i.

11. Answer.
(a) 1

(b) Hint. Be aware that |λ| = 1 and λ =
1

λ
. Also be aware that λ2 = cos(2α) + i sin(2α).

(c) ——
12. Solution.

(a) i. Let z be a complex number.
Note that |z|2 − |Re(z)|2 = |z|2 − (Re(z))2 = (Im(z))2 ≥ 0.
Then |z|2 ≥ (|Re(z)|)2. Note that |z| ≥ 0 and |Re(z)| ≥ 0. Therefore |z| ≥ |Re(z)|
• Suppose |z| = |Re(z)|. Then (Im(z))2 = 0. Therefore Im(z) = 0. Hence z is real.
• Suppose z is real. Then z = Re(z). Therefore |z| = |Re(z)|.

ii. Let z be a complex number.
Define w = −iz. We have w = −i(Re(z)+ iIm(z)) = Im(z)− iRe(z). Then Re(w) = Im(z) and Im(w) = −Re(z).
We have |z| = | − iz| = |w| ≥ |Re(w)| = |Im(z)|.
Equality holds iff w is real. The latter holds iff z is purely imaginary.

(b) Let u, v be complex numbers.
By the result in part (a), |Re(uv̄)| ≤ |uv̄| = |u||v̄| = |u||v|.
• Suppose |Re(uv̄)| ≤ |u||v|. Then, by the result in part (a), uv̄ is real.

∗ (Case 1.) Suppose v = 0. Then 0 · u+ 1 · v = 0, and 0, 1 ∈ R with 1 ̸= 0.
∗ (Case 2.) Suppose v ̸= 0.

Write p = |v|2, q = −uv̄. Note that p, q ∈ R, and p ̸= 0.
We have pu = |v|2u = uv̄v = −qv. Then pu+ qv = 0.

• Suppose there exist some p, q ∈ R such that pu+ qv = 0 and p, q are not both zero.
Without loss of generality, assume p ̸= 0. Write r = −q/p.
We have u = rv. Then Im(uv̄) = Im(rvv̄) = Im(r|v|2) = 0. Therefore uv̄ is real. Hence Re(uv̄) = |u||v|.

(c) i. Let z, w be complex numbers.

(|z|+ |w|)2 − |z + w|2

= |z|2 + |w|2 + 2|z||w| − (z + w)(z + w) = |z|2 + |w|2 + 2|z||w| − (z + w)(z̄ + w̄)

...
= |z|2 + |w|2 + 2|z||w| − (|z|2 + |w|2 + 2Re(zw̄))
= 2(|z||w| − Re(zw̄)) ≥ 2(|z||w| − |Re(zw̄)|) ≥ 0.

Then |z + w|2 ≤ (|z|+ |w|)2.
Since |z + w|, |z|, |w| are all non-negative, we have |z + w| ≤ |z|+ |w|.
Note that |z + w| = |z|+ |w| iff (Re(zw̄) = |Re(zw̄)| and |Re(zw̄)| = |z||w|).
• Suppose |z + w| = |z|+ |w|.

Then Re(zw̄) = |Re(zw̄)| and |Re(zw̄)| = |z||w|.
Since |Re(zw̄)| = |z||w|, by the result in part (b), there exist some real numbers p, q such that pz + qw = 0
and p, q are not both zero.
Without loss of generality, assume p ̸= 0.
Define s = p2 and t = −pq. Note that s > 0.
We have sz = p2z = −pqw = tw.
Since Re(zw̄) = |Re(zw̄)|, Re(zw̄) is a non-negative real number.
Now 0 ≤ sRe(zw̄) = Re(szw̄) = Re(tww̄) = Re(t|w|2) = t|w|2. Since |w|2 ≥ 0, we have t ≥ 0.

3



• Suppose there exist some non-negative real numbers s, t such that sz = tw and s, t are not both zero.
Without loss of generality, assume s > 0.
We have z = tw/s. Then zw̄ =

t

s
|w|2 > 0.

Therefore Re(zw̄) = t

s
|w|2 = |Re(zw̄)|.

Note that sz − tw = 0. Then by the result in part (b), we have |Re(zw̄)| ≤ |z||w|.
Hence (Re(zw̄) = |Re(zw̄)| and |Re(zw̄)| = |z||w|). Therefore |z + w| = |z|+ |w|.

ii. Suppose u, v are complex numbers.
We have |u| = |(u− v) + v| ≤ |u− v|+ |v|. Then |u| − |v| ≤ |u− v|.
We also have |v| = |u+ (v − u)| ≤ |u|+ |v − u| = |u|+ |u− v|. Then |u| − |v| ≥ −|u− v|.
Therefore −|u− v| ≤ |u| − |v| ≤ |u− v|. Hence | |u| − |v| | ≤ |u− v|.
| |u| − |v| | = |u− v| iff (|u| = |u− v|+ |v| or |v| = |u|+ |v − u|).
• Suppose | |u| − |v| | = |u− v|.

Then |u| = |u− v|+ |v| or |v| = |u|+ |v − u|. Without loss of generality, assume |u| = |u− v|+ |v|.
Then there exist some non-negative real numbers s, t such that s(u− v) = tv and s, t are not both zero.
Define h = s and k = s+ t. Note that h, k are non-negative real numbers.
If s = 0 then t > 0 and k = s+ t > 0. If t = 0 then h = s > 0. Hence h, k are not both zero.
We have hu = su = (s+ t)v = kv.

• Suppose there exist some non-negative real numbers h, k such that hu = kv and h, k are not both zero.
Without loss of generality, assume |u| ≥ |v|.
We have h|u| = |hu| = |kv| = k|v|. Then h ≤ k. Since h ≥ 0 and k ≥ 0 and h, k are not both zero, we have
k > 0.
Define s = h and t = k − h. Then s > 0, and t ≥ 0.
We have su = hu = kv = (k − h)v + hv = tv + sv. Then s(u− v) = tv.
Therefore by the result in part (c.i), we have |u| = |(u− v) + v| = |u− v|+ |v|. Hence |u− v| = |u| − |v| =
| |u| − |v| |.

13. —–
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