MATH1050 Exercise 3 (Answers and solution)

1. Solution.

(a) Let ¢ be a complex numbers. We have (¢ = (Re(¢) + ilm(¢))(Re(¢) — ilm(¢)) = (Re(¢))? + (Im(¢))? = [¢|?.

(b) Let z,w be complex numbers. Suppose w # 0. Z Z—ui = 27102
w  wd |w|
2. Solution.
Let z,w be complex numbers.
(a) |zw]? = (zw)(zw) = zwzw = (22)(ww) = |z|?|w|?.
Since |z| > 0, |w| > 0 and |zw| > 0, we have |zw| = |z||w].

(b) Suppose z # 0 and w # 0, and 6, ¢ are respective arguments of z, w.
Then z = |z|(cos(f) + isin(f)) and w = |w|(cos(¢) + isin(p)).

Therefore
zw = [|z[(cos(0) +isin(0))][Jw|(cos(p) + isin(p))]
= |z||w|[(cos(9) cos(¢) — sin(f) sin(p)) + i(sin(f) cos(p) + cos(8) sin(p))]
= |zw|(cos(f + ¢) + isin(f + ¢)).
3. Solution.
Let w= V3 + .
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4. Solution.
bi
Let a,b, ¢ be real numbers. Suppose a® +b% +c? =1 and ¢ # 1. Define z = C;+ .
—c
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(b) We have |z|? = I—H
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Since z = alt CZ, we have Re(z) = 1ic and Im(z) = o
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(a) Suppose z,w are complex numbers.
Then |z +w|? = |2]? + |w|? + 20 + zw.
Also, |z — w|? = |z + (—w)]? = |2)? + | — w|* + 2(—w) + 2(—w) = |2|> + |w|? — 20 — Zw.
Then |z + w|? + |z — w|? = 2|2|2 + 2|w|? + 20 + zZw — 2w — zw = 2|2|* + 2|w]|?.

Also, b= (1 —¢)Im(z)

5. Solution.

(b) i. Suppose 1, s,t are complex numbers.
Then [2r —s—t|2 =|(r—s)+(r—t)2 =2\r —s|>+2|r —t|> —|(r —s) — (r —t)|> = 2|r —s|? + 2|t —r|> — [s — t|?.
Similarly, [2s —t —r[2 =2|s —t|2 +2|r — s|? — [t —r|* and |2t — 7 — s|? = 2|t — r|*> + 2|s — ¢t|> — |r — s|2.
Therefore [2r —s —t|> + [2s —t —r|> + |2t —r — s|> = 3(|s = t|2 + |t — r|*> + |r — s|?).
ii. Let ¢, a, B be complex numbers. Suppose (? = a? + 3%. Then (¢ + a)({ —a) = (% — o? = 52
We have
(IC+al+[C—a)? = [(+al +[¢—af’ +2[(+all¢ - a

= 2[¢] + 2[af’ +2/(¢ + a)(¢ — o)

= 2P+ 2ol + 2157

= 2P+ 20af* + 2157



Modifying the above argument (by interchanging the roles played by « and ), we have (|¢ + 3|+ |[¢ — B8])* =
2I¢I* + 2181% + 2|af?.

Therefore (|¢ +a| 4+ [¢ —a|)? = (I¢+ 8] + [¢ — B])%

Note that [¢ +af +[C —af > 0 and | + 8| +|¢ — ] = 0. Then [¢ +af +[C —af = [C + 5|+ |¢ = -

6. Solution.
Let z € €. Suppose 4|z+1| = |2+16|. Then 16(z+1)(2+1) = 16(2+1)(z + 1) = 16]2+1]2 = [2+16|> = (2+16)(z + 16) =
(z+16)(z + 16).
Now 16(2Z +2z+ 2z + 1) = 2z + 162 + 162 + 162.

Therefore 1522 = 15 - 16. We have |2|? = 2z = 16. Hence |z| = 4. z lies on the circle with centre at 0 and radius 4.

7. Solution.
Write p =1+14, v =3 —1.

(a) Note that Im() = Im(n) _ —1-1 =-1.

Re(v) —Re(n) 3-1

Let n € C.
7 lies on the (‘infinite’) straight line joining u, v

i Im(y) — Im(u) = w - (Re(n) — Re(n))

L= (=1)-(Re(n) - 1)
Im(n) —2=0

iff Im(n) —
iff Re(n) +

(b) Consider the curve C on the Argand plane defined by the equation |z — p| = |z — v|.
i. Let ¢ € €. Note that

C—pl = (C=m(C—p) == —puC+pi=[C" = (1—i)¢ - (1+i)C+2
C-v]? = (-v)(—v)=¢(—7¢—v+vp=C(C+ (=3 —i)C+ (=3 +i) +10.
‘We have
lz—1—i|=]z—-3+i| iff |z—1—4d*=|z—3+if
iff (2+2i)¢C+(2-2i)(—-8=0
iff 2(¢+¢)+2i(¢C—¢)—8=0
i S(C+0) — 5 (C—0) —2=0
iff Re(()—Im(¢)—2=0

ii. The equation of the ‘infinite’ straight line ¢ joining u, v is given by Re(z) + Im(z) — 2 = 0 with unknown z in
the complex numbers.
The curve C is a straight line whose equation is given by Re(z) — Im(z) — 2 = 0 with unknown z in the complex

numbers.
The slope of £ is —1, and the slope of C' is 1. Therefore the lines ¢, C' are perpendicular to each other.

¢ and C' intersect each other at the point 2.
Note that |2 — | = v/2 = |2 — v|. Hence 2 is the mid-point of the line segment joining u, v.
It follows that C' is the perpendicular bisector of the line segment joining pu, v.

8. Answer.
z=2o0r z=4+42i.
Remark.  The curve described by the equation |z — 2 — 2i| = 2 is the circle with centre 2 + 2i and radius 2. It is
tangent to the real axis at 2 and the imaginary axis at 2i.
The curve described by the equation |z — 4 + 2i| = |z — 2| is the ‘infinite’ straight line which perpendicularly bisects the
line segment joining 4 — 2¢ and 21.

The latter passes the point 2, which lies on the former, and by symmetry (and perpendicularity), passes through the
point 4 + 2i on the former.

9. Answer.
(a) 2+ 2i, 4i (b) V2 (c) =141

Remark. The curve described by the equation |z — 2i| = 2 is the circle with centre 2¢ and radius 2. It is tangent to
the real axis at 0.

The curve described by the equation |z — 4 — 44| = |z| is the ‘infinite’ straight line which perpendicularly bisects the line
segment joining 4 + 47 and 0.

They intersect each other at the points 2 + 2¢ and 44 only.

Because (S, ) has exactly two solutions, the curve |z —a| = r, which describes the circle with centre a and with radius r,
must pass through the points 2 4+ 2¢ and 44, no matter which values «, r take. Then by symmetry, « lies on the ‘infinite’
straight line which is the perpendicular bisector for the line segment joining 2 + 2¢ and 44.



10. Solution.
5
Let w be a complex number. Suppose |w| = 1 and Im(w) > 0. Further suppose w? + — — 2 is purely imaginary.
w

There exists some 0 € R such that w = |w|(cos(d) + isin(h)).

&l

1
Since |w| = 1, we have w = cos(f) + isin(f). Then w? = cos(26) + isin(20) and — = & = cos(#) — isin(8).
w

Then w? + g — 2 = (cos(20) + 5cos(f) — 2) + i(sin(20) — 5sin(d))

Since w? + g — 2 is purely imaginary, we have 0 = Re (w2 + g - 2) = c0s(20) + 5cos(f) — 2 = 2cos?(0) + 5cos(h) — 3.
Then (2cos(6) — 1)(cos() + 3) = 0.
Therefore cos(f) = % or cos(f) = —3. The possibility ‘cos() = —3’ is rejected. Then cos() = %

V3 V3 V3

Therefore sin(f) = 5 or sin(f) = — Since Im(w) > 0, we have Im(w) = sin(f) = -
1
Therefore w = cos(#) + isin(f) = 3 + gz

11. Answer.
(a) 1
—- 1
(b) Hint. Be aware that |A| =1 and A = T Also be aware that A\? = cos(2a) + i sin(2a).
() ——

12. Solution.

(a) i. Let z be a complex number.
Note that |z]? — |Re(2)|? = |2]? — (Re(2))? = (Im(2))? > 0.
Then |z|? > (|Re(2)])?. Note that |z| > 0 and |Re(z)| > 0. Therefore |z| > |Re(z)|
« Suppose |z| = |Re(z)|. Then (Im(2))? = 0. Therefore Im(z) = 0. Hence z is real.
e Suppose z is real. Then z = Re(z). Therefore |z| = |Re(z)].
ii. Let z be a complex number.
Define w = —iz. We have w = —i(Re(z) +ilm(z)) = Im(z) — iRe(z). Then Re(w) = Im(z) and Im(w) = —Re(z2).
We have |z| = | —iz] = |w| > |Re(w)| = |[Im(2)].
Equality holds iff w is real. The latter holds iff z is purely imaginary.
(b) Let u,v be complex numbers.
By the result in part (a), |Re(ud)| < |ud| = |u||o| = |u||v]|.
e Suppose |Re(uv)| < |u||v|. Then, by the result in part (a), uv is real.
x (Case 1.) Suppose v =0. Then 0-u+1-v =0, and 0,1 € R with 1 # 0.
* (Case 2.) Suppose v # 0.
Write p = |v|?, ¢ = —uv. Note that p,q € IR, and p # 0.
We have pu = |v|>u = uvv = —qv. Then pu + qv = 0.
e Suppose there exist some p, g € R such that pu + qu = 0 and p, ¢ are not both zero.
Without loss of generality, assume p # 0. Write r = —q/p.
We have u = rv. Then Im(uv) = Im(rvv) = Im(r|v|?) = 0. Therefore uv is real. Hence Re(uv) = |ul|v].

(¢c) i. Let z,w be complex numbers.
(I2] + w])* = |2 + w]?
= 2?4+ |w]® + 2[z|jw| — (z + w)(z + w) = |2|* + [w]* + 2|z[|w| — (z + w)(Z + ©)

= el + [wl* + 2lzllw] — (|2]* + [w]® + 2Re(z))
= 2(|z[[w] — Re(zw)) > 2(|z[[w| - [Re(zw)]) > 0.

Then |z +w|? < (|2] + |w|)%.

Since |z + w|, |z|, |w| are all non-negative, we have |z + w| < |z| + |w].

Note that |z + w| = |z| + |w| iff (Re(zw) = |Re(zw)| and |Re(zw)| = |z||w]).

e Suppose |z + w| = |z| + |w].

Then Re(zw) = |Re(zw)| and |Re(zw)| = |z||w].
Since |Re(zw)| = |z||w], by the result in part (b), there exist some real numbers p, ¢ such that pz + qw =0
and p, q are not both zero.
Without loss of generality, assume p # 0.
Define s = p? and t = —pq. Note that s > 0.
We have sz = p?z = —pqw = tw.
Since Re(zw) = |Re(zw)|, Re(zw) is a non-negative real number.
Now 0 < sRe(zw) = Re(szw) = Re(tww) = Re(t|w|?) = t|w|?. Since |w|?> > 0, we have t > 0.



13.

e Suppose there exist some non-negative real numbers s, ¢ such that sz = tw and s, t are not both zero.
Without loss of generality, assume s > 0.

t
We have z = tw/s. Then zw = —|w|* > 0.
s

Therefore Re(z) — é\w|2 — [Re(z)].
Note that sz — tw = 0. Then by the result in part (b), we have |Re(zw)| < |z||w].
Hence (Re(zw) = |Re(zw)| and |Re(zw)| = |z||w]|). Therefore |z + w| = |z| + |w|.
ii. Suppose u,v are complex numbers.
We have |u| = |(u —v) +v| < |u—ov|+ |v]. Then |u| — |v]| < |u —v|.
We also have |v| = |u+ (v —u)| < |u|+ |[v —u| = |u| + |u — v]. Then |u| — |v| > —|u — v].
Therefore —|u — v| < |u] — |v| < |u—v|. Hence | |u| — |v| | < |u—v].

| ful = ol | = |u = o iff (Ju] = Ju—v| +[v] or [v] = [u] + |v = ul).
e Suppose | |u] = |v| | = Ju —v].
Then |u] = |u —v| + |v] or |v] = |u| + |v — u|. Without loss of generality, assume |u| = |u — v| + |v].

Then there exist some non-negative real numbers s, ¢ such that s(u —v) = tv and s,t are not both zero.
Define h = s and k = s 4+ t. Note that h, k are non-negative real numbers.
If s=0thent>0and k=s+¢t>0. If t=0 then h = s > 0. Hence h, k are not both zero.
We have hu = su = (s + t)v = kv.

e Suppose there exist some non-negative real numbers h, k such that hu = kv and h, k are not both zero.
Without loss of generality, assume |u| > |v|.
We have h|u| = |hu| = |kv| = Ek|v|. Then h < k. Since h > 0 and k > 0 and h, k are not both zero, we have

k> 0.
Define s=h and t =k — h. Then s > 0, and ¢t > 0.

We have su = hu = kv = (k — h)v + hv = tv + sv. Then s(u —v) = tv.
Therefore by the result in part (c.i), we have |u| = [(u — v) + v| = |[u — v| + |v|. Hence |u — v| = |u| — |v| =
| ful = ol |-



