
MATH1050 Exercise 3

1. (a) Suppose ζ is a complex number. Verify that |ζ|2 = ζζ̄.

(b) Let z, w be complex numbers. Suppose w ̸= 0. Verify that z

w
=

zw̄

|w|2
.

Remark. This looks easy. And it is indeed easy. But it suggests division involving complex numbers can be
done in a much more comfortable way. (How?)

2. Let z, w be complex numbers.

(a) Verify that |zw| = |z||w|.
(b) Suppose z ̸= 0 and w ̸= 0, and θ, φ are respective arguments of z, w. Verify that zw = |zw|(cos(θ+φ)+ i sin(θ+φ)).

3. Let ω =

√
3 + i

2
.

(a) Write down the respective values of ω2, ω3, ω11, ω12.

(b) Hence, or otherwise, find the value of
2230∑
k=0

ωk+1.

4. Let a, b, c be real numbers. Suppose a2 + b2 + c2 = 1 and c ̸= 1. Define z =
a+ bi

1− c
.

(a) Express |z|2 in terms of c alone.
(b) Express each of a, b, c in terms of z, z̄ alone.

5. (a) Prove the statement below, known as the Parallelogram Identity:
• Suppose z, w are complex numbers. Then |z + w|2 + |z − w|2 = 2|z|2 + 2|w|2.

(b) Prove the statements below:
i. Suppose r, s, t are complex numbers. Then |2r−s−t|2+ |2s−t−r|2+ |2t−r−s|2 = 3(|s−t|2+ |t−r|2+ |r−s|2).
ii. Let ζ, α, β be complex numbers. Suppose ζ2 = α2 + β2. Then |ζ + α|+ |ζ − α| = |ζ + β|+ |ζ − β|.

6. Let z ∈ C. Suppose 4|z+1| = |z+16|. Verify that z lies on the circle with centre at 0 and with radius 4 (on the Argand
plane).

7.♢ Write µ = 1 + i, ν = 3− i.

(a) Let η ∈ C. Prove that the point η lies on the (‘infinite’) straight line joining µ, ν iff Re(η) + Im(η)− 2 = 0.
(b) Consider the curve C on the Argand plane defined by the equation |z − µ| = |z − ν|.

i. Prove that the curve C is also described by the equation Re(z)− Im(z)− 2 = 0.
ii. Hence, or otherwise, prove that the curve C is the perpendicular bisector for the line segment joining µ, ν (on

the Argand plane).

Remark. Given the same straight line, there are various ways to write down an equation (with unknown z in the
complex numbers) whose solution set is the straight line concerned on the Argand plane:

• aRe(z) + bIm(z) + c = 0, in which a, b, c are given real number with a, b being not both zero.
• αz̄ + ᾱz + d = 0, in which α is a given non-zero complex number and d is a given real number.
• |z − β| = |z − γ|, in which β, γ are given distinct complex numbers.

8. There is no need to give any justifications for your answers in this question.

Find all the solutions of the system of equations
{

|z − 2− 2i| = 2

|z − 4 + 2i| = |z − 2i| with unknown z in C.

Remark. What are the curves described by the respective equations in the Argand plane?

9. There is no need to give any justifications for your answers in this question.

Consider the system of equations (Sα,r) :


|z − 2i| = 2

|z − 4− 4i| = |z|
|z − α| = r

with unknown z in C. Here α is some complex

number and r is a non-negative real number.
Suppose that (Sα,r) has two distinct solutions.

(a) Write down all solutions of (Sα,r).
(b) What is the smallest possible value of r?
(c) What is the value of α if |Re(α)| = |Im(α)|?
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Remark. What are the curves described by the respective equations in the Argand plane?

10. Let ω be a complex number. Suppose |ω| = 1 and Im(ω) ≥ 0. Further suppose ω2 +
5

ω
− 2 is purely imaginary. Find the

value of ω.
Remark. Use the polar form of ω.

11. Let α, β, γ be real numbers. Suppose α+ β + γ = 2π.
Define λ, µ, ν by λ = cos(α) + i sin(α), µ = cos(β) + i sin(β), ν = cos(γ) + i sin(γ) respectively.

(a) Find the value of λµν.

(b) Prove that cos(α) =
1

2
(λ+

1

λ
) and cos(2α) =

1

2
(λ2 +

1

λ2
).

(c)♢ Hence, or otherwise, prove that cos(2α) + cos(2β) + cos(2γ) = 4 cos(α) cos(β) cos(γ)− 1.

12. (a)♢ Prove the statements below:
i. Suppose z is a complex number. Then |Re(z)| ≤ |z|. Moreover, equality holds iff z is real.
ii. Suppose z be a complex number. Then |Im(z)| ≤ |z|. Moreover, equality holds iff z is purely imaginary.

(b)♢ Prove the statement below:
• Suppose u, v are complex numbers. Then |Re(uv̄)| ≤ |u||v|. Moreover, equality holds iff there exist some real

numbers p, q such that pu+ qv = 0 and p, q are not both zero.
(c)♣ Prove the statements below (known collectively as the Triangle Inequality for complex numbers):

i. Suppose z, w are complex numbers. Then |z + w| ≤ |z| + |w|. Moreover, equality holds iff there exist some
non-negative real numbers s, t such that sz = tw and s, t are not both zero.

ii. Suppose u, v are complex numbers. Then | |u| − |v| | ≤ |u − v|. Moreover, equality holds iff there exist some
non-negative real numbers h, k such that hu = kv and h, k are not both zero.

13. We introduce the definitions below:
• Let z ∈ C. The number z is said to be a Gaussian integer if both of Re(z), Im(z) are integers.
• The set of all Gaussian integers is denoted by G.

(a) Prove the statements below:
i. Suppose s ∈ Z. Then s ∈ G.
ii. Let s is a Gaussian integer. Suppose s ̸= 0. Then |s| ≥ 1.
iii. Suppose s, t ∈ G. Then s̄ ∈ G, s+ t ∈ G and st ∈ G.
iv. Suppose s, t ∈ G. Further suppose |st| = 1. Then |s| = |t| = 1.

(b) We introduce the definition below:
• Let u, v ∈ G. The number u is said to be G-divisible by v if there exists some s ∈ G such that u = sv.

Prove the statements below:
i. Suppose u ∈ G. Then u is G-divisible by u.
ii.♢ Let u, v ∈ G. Suppose (u is G-divisible by v and v is G-divisible by u). Then |u| = |v|.
iii. Let u, v, w ∈ G. Suppose (u is G-divisible by v and v is G-divisible by w). Then u is G-divisible by w.
iv. Let u, v, t ∈ G. Suppose (u is G-divisible by t and v is G-divisible by t). Then u+ v is G-divisible by t.
v. Let u, v, t ∈ G. Suppose (u is G-divisible by t or v is G-divisible by t). Then uv is G-divisible by t.
vi. Let u, v ∈ G. Suppose u ̸= 0 and u is G-divisible by v. Then |v| ≤ |u|.

(c)♢ We introduce the definition below:
• Let z ∈ C. The number z is said to be a Gaussian rational if there exist some Gaussian integer u, v such that

v ̸= 0 and u = vz.
Prove the statements below:

i. Suppose z is a rational number. Then z is a Gaussian rational.
ii. Suppose z is a Gaussian integer. Then z is a Gaussian rational.
iii. Suppose z ∈ C. Then z is a Gaussian rational iff (there exist some s, t ∈ Q such that z = s+ ti.)
iv. Suppose z, w are Gaussian rationals. Then z + w is a Gaussian rational.
v. Suppose z, w are Gaussian rationals. Then z − w is a Gaussian rational.
vi. Suppose z, w are Gaussian rationals. Then zw is a Gaussian rational.
vii. Suppose z, w are Gaussian rationals. Further suppose w ̸= 0. Then z

w
is a Gaussian rational.

Remark. Preview on your algebra course. The set G is a subset of C and contains Z as a subset. In your algebra
course, the set G is likely denoted by Z[i]. The set G, together with addition and multiplication for complex numbers,
constitutes an integral domain; further together with the modulus for complex numbers, it constitutes an Euclidean
domain. It behaves in many ways similar to integers, and similar to polynomials with real coefficients. Many results
on the notion of ‘divisibility’ for integers and polynomials with real coefficients in school maths have their analogues for
Gaussian integers. The set of all Gaussian rationals is a subset of C and contains each of Q and G as a subset. In your
algebra course, it is likely denoted by Q[i] in some contexts, and by Q(i) in some other contexts. This set, together with
addition and multiplication for complex numbers, constitutes a field.
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