
MATH1050 Exercise 2 Supplement

1. Let a, b, c, p, q, r be numbers, with a ̸= 0 and p ̸= 0. Let f(x), g(x) be the quadratic polynomials given by f(x) =

ax2 + bx + c, g(x) = px2 + qx + r respectively. Suppose α, β are the roots of f(x), and α ̸= 0, β ̸= 0. Further suppose
1

α
,
1

β
are the roots of g(x).

Prove that ap = cr and aq = br.

2. Let p, q, r be numbers. Suppose p+ q − 2r ̸= 0. Let f(x) be the quadratic polynomial given by f(x) = (p+ q − 2r)x2 +

(q + r − 2p)x+ (r + p− 2q).

(a) Verify that 1 is a root of f(x).
(b) Prove that f(x) has a repeated root iff q = r.

3. Let k be a number, and f(x) be the quadratic polynomial given by f(x) = x2 − 2x + k. Suppose α, β are the roots of
f(x).

(a) Find the quadratic polynomial g(x) with leading coefficient 1 whose roots are α3, β3.

(b) Also prove that the discriminant ∆g of g(x) is given by ∆g = A(B − k)(C − k)2. Here A,B,C are integers, whose
values you have to determine explicitly.

(c) Suppose k is a real number. Further suppose α, β are not real numbers, but α3, β3 are real numbers. Find all
possible values of k. Justify your answer.

4. Let a, b be real numbers. Suppose a > b and a + b ̸= 0. Let f(x) be the quadratic polynomial given by f(x) =

(a− b)x2 − 2(a2 + b2)x+ (a3 − b3).

(a) Prove that the roots of f(x) are real and distinct iff ab > 0.

(b) Suppose α, β are distinct real roots of f(x), and α > β. Prove that α− β =
2(a+ b)

√
ab

a− b
.

5.♢ Let a, b be real numbers. Suppose a > b > 0. Let f(x) be the quadratic polynomial given by f(x) = 2x2−(3a+b)x+ab.
Prove that f(x) has two distinct real roots, one of them greater than b and the other less than b.

6. Let a, b, x ∈ R. Suppose a < b. Prove the statements below:

(a) Suppose (x− a)(x− b) > 0. Then x < a or x > b.
(b) Suppose (x− a)(x− b) < 0. Then a < x < b.

Remark. In fact, the converses of the respective statements are also true. These statements and their respective
converses constitute the theoretical foundation in the arithmetic for solving quadratic inequalities. Also deduce on your
own the analogous theoretical results for non-strict inequalities.

7. (a)♢ Let u, v, w ∈ R. Suppose u < v < w. Prove the statements below
i. Suppose uvw > 0. Then 0 < u < v < w or u < v < 0 < w.
ii. Suppose uvw < 0. Then u < 0 < v < w or u < v < w < 0.

Remark. At some stage of the argument we may come into situations in where we use the Distributive Laws for
‘and’, ‘or’ (with or without our being aware of them).1 Also note that the converses of the respective statements
are also true.

(b)♣ Let a, b, c, x ∈ R. Suppose a < b < c. Prove the statements below:
i. Suppose (x− a)(x− b)(x− c) > 0. Then a < x < b or x > c.
ii. Suppose (x− a)(x− b)(x− c) < 0. Then x < a or b < x < c.

1The Distributive Laws for ‘and’, ‘or’ in logic may be in-formally stated as below:
A. The pair of statements below are the same in the sense that one holds exactly when the other holds:

• (blah-blah-blah or bleh-bleh-bleh) and bloh-bloh-bloh.
• (blah-blah-blah and bloh-bloh-bloh) or (bleh-bleh-bleh and bloh-bloh-bloh).

B. The pair of statements below are the same in the sense that one holds exactly when the other holds:
• (blah-blah-blah and bleh-bleh-bleh) or bloh-bloh-bloh.
• (blah-blah-blah or bloh-bloh-bloh) and (bleh-bleh-bleh or bloh-bloh-bloh).

More will be said of them in the discussion on logic.
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Remark. The respective converses of the statements are also true. The statements and their respective converses
suggest how we may proceed with the arithmetic for solving cubic inequalities (as long as we know how to factorize the
cubic polynomials involved). Deduce on your own the analogous theoretical results for non-strict inequalities.

8. Solve for all real solutions of each of the inequalities (or systems of inequalities) below.

(a) x2 ≥ 5x− 6.
(b) (x− 2)(x+ 3) < 2(x− 2).
(c) (x+ 8)(2x− 3) < (x− 5)(x+ 8).

(d) (x− 1)(x− 2)(x− 3) ≥ 27x− 6.
(e) (x− 1)2(x− 4) ≥ 0.
(f) (x− 1)(x− 3)2 ≤ 0.

(g) (x+ 3)x(x− 1)(x− 2) > 0.

(h) (x− 1)(x− 2)(x− 4)(x− 8) ≤ 0.

Remark. Now suppose you are not required to give any step of algebraic manipulation. Can you modify the ‘graphical
method’ for solving equations in school mathematics to determine the answer for each part as quickly as possible?

9.♢ Solve for all real solutions of each of the inequalities (or systems of inequalities) below.

(a) x > − 5

x
+ 6.

(b) x ≤ − 6

x+ 1
+ 4.

(c) 2x− 1 ≤ 3

x− 1
− 4.

(d) 2x

x+ 1
≥ 2x− 1.

(e) 2x− 3

x+ 1
≤ 1.

(f) 3x+ 1

x+ 2
≥ 1.

(g) 1

x+ 1
≤ 1

3− x
.

(h) 1

x2 − 6x+ 8
≥ 0.

(i) 3

x2 − 6x+ 8
≥ 1.

(j) x2 − 7x+ 12

x2 − 3x+ 2
≤ 0.

(k) x2 − 7x+ 12

x2 − 3x+ 2
≤ −1.

(l) x2 − 1

x2 − 4
≥ 0.

(m) x2 − 1

x2 − 4
≥ 1.

Remark. Now suppose you are not required to give any step of algebraic manipulation. Can you modify the ‘graphical
method’ for solving equations in school mathematics to determine the answer for each part as quickly as possible?

10. Solve for all real solutions of each of the inequalities (or systems of inequalities) below:

(a) |x+ 3| < 2.
(b) |2x− 9| ≤ 15.
(c) |8− 3x| ≤ 7.
(d) |x− 2| > 4.
(e) |2x+ 5| ≥ 13.
(f) |6− x| ≥ 6.

(g) |x2 + 7x− 1| < 7.
(h) |2x2 − 8x− 1| ≤ 9.
(i) | − x2 + 2x+ 3| ≥ 5.
(j) |x2 − x− 3| < 3.

(k)
∣∣∣∣3x− 1

4x+ 1

∣∣∣∣ > 0.

(l)♢ | 2|x| − 9 | ≤ 5.

(m) x2 < |x+ 2|.

(n) |3x+ 1| ≥ x2 + 1.

(o)♢ |x− 3|
2x

< 1.

(p)♢ |x− 9|
3x+ 1

> 1.

(q) |4x+ 1| > |x− 3|.

(r)♢ (x+ 2)|x− 2| < −5.

(s)♢ x2 − |x| − x < 0.

11.♢ Solve for all real solutions of the inequalities below:

(a)
√
4x+ 1 < x+ 1. (b)

√
6x+ 3 > 3x+ 1.

Remark. The absolute value is implicitly involved in these inequalities: what do you obtain when you square both
sides of each inequalities?

12. Let c be a real number. Let f(x) be the polynomial given by f(x) = (c− 4)x2 + (2c− 1)x+ (4c− 1).
Suppose α, β are the roots of f(x), and α < 0 < β.

(a) By considering the product αβ, or otherwise, prove that 1

4
< c < 4.

(b) Further suppose α+ β < 0. Prove that 1

4
< c <

1

2
.

13. Let f : R −→ R be the function defined by f(x) =
x2 − 2x+ 3

x2 + 2x+ 3
for any x ∈ R.

(a) Let α ∈ R. Prove that 2−
√
3 ≤ f(α) ≤ 2 +

√
3.

Remark. There is no need to use calculus. Write β = f(α) and re-express the equality f(α) =
α2 − 2α+ 3

α2 + 2α+ 3
in

the form Aα2 +Bα+ C = 0. Then ask what you have learnt about quadratic equations will tell you.

(b) Prove that f attains absolute minimum value 2−
√
3 and attains absolute maximum value 2 +

√
3.
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14. Let f : R\{−1} −→ R be the function defined by f(x) =
x2 + x+ 1

x+ 1
for any x ∈ R\{−1}.

(a) Let α ∈ R\{−1}. Prove that f(α) ≤ −3 or f(α) ≥ 1.

Remark. There is no need to use calculus. Write β = f(α) and re-express the equality β =
α2 + α+ 1

α+ 1
in the

form Aα2 +Bα+ C = 0. Then ask what you have learnt about quadratic equations will tell you.
(b)♢ Does f attain the values −3, 1? Justify your answer.

15. Let f : R\{2, 4} −→ R be the function defined by f(x) =
(x− 1)(x− 5)

(x− 2)(x− 4)
for any x ∈ R\{2, 4}.

(a) Let α ∈ R\{2, 4}. Prove that f(α) ≤ 1 or f(α) ≥ 4.

Remark. There is no need to use calculus. Write β = f(α) and re-express the equality β =
(α− 1)(α− 5)

(α− 2)(α− 4)
in

the form Aα2 +Bα+ C = 0. Then ask what you have learnt about quadratic equations will tell you.
(b)♢ Does f attain the value 1? Justify your answer.
(c)♢ Does f attain the value 4? Justify your answer.

16. Let n be a positive integer.

(a) Prove that k(n− k + 1) ≥ n for each integer k amongst 1, 2, · · · , n.
(b) Hence, or otherwise, prove that (n!)2 ≥ nn.

17. (a) Let n ∈ N\{0}. Prove that 2n

2n+ 1
<

2n+ 1

2n+ 2
.

Remark. There is no need for mathematical induction.

(b) Prove that
5000∏
k=1

2k − 1

2k
<

1

100

18. (a) Prove the statement (♯) below:
(♯) Suppose x, y ∈ R. Then x2 + y2 ≥ 2xy. Moreover, equality holds iff x = y.

(b) Prove the statement (♭) below:
(♭) Suppose u, v, w ∈ R. Then u2 + v2 + w2 ≥ uv + vw + wu. Moreover equality holds iff u = v = w.

(c) By applying the result described by (♯), or otherwise, prove the statements below:

i. Suppose r, s, t be positive real numbers. Then r + s+ t ≥
√
rs+

√
st+

√
tr.

ii. Suppose x, y, z ∈ R. Then x2y2 + y2z2 + z2x2 ≥ xyz(x+ y + z).
iii. Suppose a, b, c, d are positive real numbers. Then (a+ b)(a+ c)(a+ d)(b+ c)(b+ d)(c+ d) ≥ 64(abcd)3/2.
iv. Let p, q, r, s, t be positive real numbers. Suppose pqrst = 1. Then (1 + p)(1 + q)(1 + r)(1 + s)(1 + t) ≥ 32.

19. (a) Prove the statement below:

(♯) Suppose x, y are positive real numbers. Then x

y
+

y

x
≥ 2. Moreover, equality holds iff x = y.

(b) By applying the result described by (♯), or otherwise, prove the statements below:
i. Suppose a > 1 and b > 1. Then loga(b) + logb(a) ≥ 2. Equality holds iff a = b.

ii. Suppose u ∈ R. Then u2 + 2√
u2 + 1

≥ 2. Equality holds iff u = 0.

iii. Suppose v ∈ R. Then v2

1 + v4
≤ 1

2
. Equality holds iff (v = 1 or v = −1).

20. We introduce this definition below:

Let a, b, c be three positive real numbers (not necessarily distinct from each other). The numbers a, b, c are said to
constitute the three sides of a triangle if the three inequalities a+b > c, b+c > a, c+a > b hold simultaneously.

(a) Let a, b be positive real numbers. Suppose a ≥ b. Prove that there exists some positive real number c such that
a, b, c constitute the three sides of a triangle.
Remark. For the geometric interpretation, see Proposition 22, Book I of Euclid’s Elements.

3



(b) Let a, b, c be positive real numbers. Suppose a, b, c constitute the three sides of a triangle. Prove that
√
a,
√
b,
√
c

constitute the three sides of a triangle.
(c) Let a, b, c be positive real numbers. Suppose a, b, c constitute the three sides of a triangle. Prove the statements

below:
i. a2 + b2 + c2 < 2(ab+ bc+ ca).
ii. 3(ab+ bc+ ca) ≤ (a+ b+ c)2 < 4(ab+ bc+ ca).
iii. (a+ b+ c)(a+ b− c) < 4ab.

21. In this question, you may assume without proof the validity of the statement below:

• For any real numbers µ, ν, if 0 < µ < ν <
π

2
then 0 < sin(µ) < sin(ν) < 1.

Let the angles at vertices A,B,C in △ABC be α, β, γ respectively. Suppose each angle in △ABC is an acute angle.
Prove the statements below:

(a) cos(
γ

2
) > sin(

γ

2
).

(b) sin(α) + sin(β) > cos(α) + cos(β).
(c) sin(α) + sin(β) + sin(γ) > cos(α) + cos(β) + cos(γ).

22. We introduce the definitions below:

• Let a, b ∈ R.
We define the maximum of a, b, which we denote by max(a, b), by

max(a, b) =

{
b if a ≤ b

a if a > b

We define the minimum of a, b, which we denote by min(a, b), by

min(a, b) =

{
a if a ≤ b

b if a > b

Prove the statements below:

(a) Suppose a, b ∈ R. Then min(a, b) ≤ a ≤ max(a, b) and min(a, b) ≤ b ≤ max(a, b).

(b) Suppose a, b ∈ R. Then max(a, b) =
a+ b+ |a− b|

2
and min(a, b) =

a+ b− |a− b|
2

.

(c) Suppose a, b ∈ R. Then a+ b = max(a, b) + min(b, a) and |a− b| = max(a, b)−min(a, b).
(d) Suppose a, b ∈ R. Then max(a, b) = max(b, a) and min(a, b) = min(b, a).
(e) Suppose a, b ∈ R. Then max(−a,−b) = −min(a, b) and min(−a,−b) = −max(a, b).

(f)♢ Suppose a, b, c ∈ R. Then max(max(a, b), c) = max(a,max(b, c)) and min(min(a, b), c) = min(a,min(b, c)).

(g)♢ Suppose a, b, c ∈ R. Then min(max(a, b),max(b, c),max(a, c)) = max(min(a, b),min(b, c),min(c, a)).

23. (a) Prove the statements below:
i. Suppose a ∈ R. Then |a| = | − a|.
ii. Suppose b, c ∈ R. Then −b ≤ c ≤ b iff |c| ≤ b.

(b) Apply the results above to prove the statement below:
• Suppose x, y ∈ R. Then |x+ y| ≤ |x|+ |y|.

24. Let ε be a positive real number. Let x, y, x0, y0 be real numbers. Prove the statements below:

(a)♢ Suppose |x− x0| <
ε

2
and |y − y0| <

ε

2
. Then |(x+ y)− (x0 + y0)| < ε and |(x− y) + (x0 − y0)| < ε.

(b)♣ Suppose |x− x0| < min(
ε

2|y0|+ 1
, 1) and |y − y0| <

ε

2|x0|+ 1
. Then |xy − x0y0| < ε.

(c)♣ Suppose y0 ̸= 0 and |y − y0| < min(
|y0|
2

,
ε|y0|2

2
). Then y ̸= 0 and

∣∣∣∣1y − 1

y0

∣∣∣∣ < ε.
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25.♢ Let c, ε be positive real numbers. Define δ = min(1,
ε

1 + 3c+ 3c2
).

(a) Prove that δ > 0 and δ ≤ 1.
(b) Let x be a real number. Suppose |x− c| < δ.

i. Prove that |x2 + cx+ c2| ≤ 1 + 3c+ 3c2.
ii. Hence, or otherwise, deduce that |x3 − c3| < ε.

Remark. This is what we have verified overall: For any c > 0, for any ε > 0, there exists some δ > 0, (namely,
δ = min(1,

ε

1 + 3c+ 3c2
)) such that for any x ∈ R, if |x − c| < δ then |x3 − c3| < ε. Hence we have argued for the

continuity of the function t3 at every positive value of t.

26.♢ Let c, ε be positive real numbers. Define δ = min(
εc2

2
,
c

2
).

(a) Prove that δ > 0 and δ ≤ c2

2
.

(b) Let x be a real number. Suppose |x− c| < δ.

i. Prove that x >
c

2
.

ii. Hence, or otherwise, deduce that
∣∣∣∣ 1x − 1

c

∣∣∣∣ < ε.

Remark. This is what we have verified overall: For any c > 0, for any ε > 0, there exists some δ > 0, (namely,

δ = min(
εc2

2
,
c

2
)) such that for any x ∈ R, if |x − c| < δ then |1/x − 1/c| < ε. Hence we have argued for the continuity

of the function 1/t at every positive value of t.

27.♢ Let c, ε be positive real numbers. Define δ = min(ε
√
c,

c

2
).

(a) Prove that δ > 0 and δ ≤ c2

2
.

(b) Suppose |x− c| < δ.

i. Prove that x >
c

2
.

ii. Hence, or otherwise, deduce that |
√
x−

√
c| < ε.

Remark. This is what we have verified overall: For any c > 0, for any ε > 0, there exists some δ > 0, (namely,
δ = min(ε

√
c,

c

2
)) such that for any x ∈ R, if |x− c| < δ then |

√
x−

√
c| < ε. Hence we have argued for the continuity of

the function
√
t at every positive value of t.

28. (a) Prove the statement below:

• Suppose u, v ∈ R. Then |u| ≤
√
u2 + v2 and |u+ v| ≤ 2

√
u2 + v2.

(b)♢ Let a, b be real numbers, and ε be a positive real number. Define δ =
ε

2
.

Suppose
√

(x− a)2 + (y − b)2 < δ. Prove that |(x+ y)− (a+ b)| < ε.
Remark. This is what we have verified overall: For any a, b ∈ R, for any ε > 0, there exists some δ > 0, (namely,
δ =

ε

2
) such that for any x, y ∈ R, if

√
(x− a)2 + (y − b)2 < δ then |(x+ y)− (a+ b)| < ε. Hence we have argued

for the continuity of the function s+ t at every point (s, t) on the plane R2.

(c)♣ Let a, b be real numbers, and ε be a positive real number. Define δ = min(
ε

|a|+ |b|+ 1
, 1).

Suppose
√

(x− a)2 + (y − b)2 < δ. Prove that |xy − ab| < ε.
Remark. This is what we have verified overall: For any a, b ∈ R, for any ε > 0, there exists some δ > 0, (namely,
δ = min(

ε

|a|+ |b|+ 1
, 1)) such that for any x, y ∈ R, if

√
(x− a)2 + (y − b)2 < δ then |xy − ab| < ε. Hence we have

argued for the continuity of the function s+ t at every point (s, t) on the plane R2.
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29. Take for granted the validity of the statement below, (which is a special case of Bernoulli’s Inequality):

• Let α ∈ R and m ∈ N\{0, 1}. Suppose −1 < α < 0 or α > 0. Then (1 + α)m > 1 +mα.

(a) Let a ∈ R and n ∈ N\{0}. Suppose a > 1.
i.♢ Applying Bernoulli’s Inequlaity, or otherwise, prove that an+1 − 1 < (n+ 1)(a− 1)an.

ii. Hence deduce that an+1 − 1

n+ 1
>

an − 1

n
.

(b)♢ Hence prove the statement below:

• Let a ∈ R and k, ℓ ∈ N\{0}. Suppose a > 1, and k > ℓ. Then ak − 1

k
>

aℓ − 1

ℓ
.

(c)♣ Hence prove the statements below:

i. Let b ∈ R and r ∈ Q. Suppose b > 1 and r > 1. Then br − 1

r
> b− 1.

ii. Let β ∈ R and r ∈ Q. Suppose β > 0 and r > 1. Then (1 + β)r > 1 + rβ.

iii. Let c ∈ R and s, t ∈ Q. Suppose c > 1 and s > t > 1. Then cs − 1

s
>

ct − 1

t
.

Remark. Modifying the arguments with which you work out the arguments in this question, try to prove the
statements below as well:
(A) Let β ∈ R and r ∈ Q. Suppose −1 < β < 0 and r > 1. Then (1 + β)r > 1 + rβ.
(B) Let β ∈ R and r ∈ Q. Suppose −1 < β < 0 or β > 0 and 0 < r < 1. Then (1 + β)r < 1 + rβ.

(C) Let c ∈ R and s, t ∈ Q. Suppose 0 < c < 1 and s > t > 1. Then 1− cs

s
<

1− ct

t
.

30. Let c ∈ R. Let f : R −→ R be the function defined by f(x) = −x2 + c for any x ∈ R.

(a) Verify according to definition that the function f attains absolute maximum at 0, with absolute maximum value c.
(b) Verify according to definition that f is strictly increasing on (−∞, 0].
(c) Verify according to definition that f is strictly decreasing on [0,+∞).
(d)♢ Verify according to definition that f is strictly concave on R.

31. Let b ∈ R. Let f : R −→ R be the function defined by f(x) = x2 + bx for any x ∈ R.

(a) Verify according to definition that the function f attains absolute minimum at −b/2, with absolute minimum value
−b2/4.

(b) Verify according to definition that f is strictly decreasing on (−∞,−b/2].
(c) Verify according to definition that f is strictly increasing on [−b/2,+∞).
(d)♢ Verify according to definition that f is strictly convex on R.

32. (a) Let f : R −→ R be the function defined by f(x) = x3 for any x ∈ R. Verify that f is strictly increasing on R,
according to definition.

(b) Let g : R −→ R be the function defined by g(x) = x3 + x for any x ∈ R. Verify that g is strictly increasing on R,
according to definition.

(c) Let h : R −→ R be the function defined by h(x) = x3 − 3x for any x ∈ R. Verify that h is strictly increasing on
(−∞,−1] and on [1,+∞), and that h is strictly decreasing on [−1, 1], according to definition.

33. In this question you are assumed to be familiar with one-variable calculus.
Take for granted the validity of the statement (MV T ), known as Mean-Value Theorem:

(MV T ) Let a, b ∈ R, with a < b, and f be a function defined on [a, b].
Suppose f satisfies all the conditions below:

(C) f is continuous on [a, b]. (D) f is differentiable on (a, b).

Then there exists some ζ ∈ (a, b) such that f(b)− f(a) = (b− a)f ′(ζ).

(a)♢ Apply the Mean-Value Theorem to deduce the statement (SI) below, (which relates strict monotonicity to the
sign of the first derivative):

(SI) Let f be a real-valued function defined on some open interval I in R.
Suppose f satisfies all the conditions:
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(C) f is continuous on I. (D) f is differentiable on I. (P) f ′(x) > 0 for any x ∈ I.

Then f is strictly increasing on I.
Remark. Formulate and prove the analogous result for strictly decreasing functions. This pair of results provides
some useful tools for proving inequalities. It also constitutes the theoretical foundation for the ‘First Derivative
Test’ for checking relative extrema. (Refer to the material in your calculus course.)

(b)♣ Apply the Mean-Value Theorem, the statement (SI), to prove the statement (SV ) (which relates strict convex-
ity/concavity to the sign of the second derivative):

(SV ) Let f be a real-valued function defined on some open interval I in R.
Suppose f satisfies all the conditions:

(D2) f is twice differentiable on I. (P2) f ′′(x) > 0 for any x ∈ I.

Then f is strictly convex on I.
Remark. Formulate and prove the analogous result for strictly concave functions. This pair of results constitutes
the theoretical foundation for the ‘Second Derivative Test’ for checking relative extrema. (Refer to the material in
your calculus course.)

34. Let f : (0, 10) −→ R be the function defined by f(x) =

√
1000− x3

3x
for any x ∈ (0, 10).

(a) Verify that f ′(x) = A

(
f(x)

x
+

x

f(x)

)
for any x ∈ (0, 6). Here A is a constant whose value you have to determine

explicitly.
(b) Hence, or otherwise, prove that f is strictly monotonic on (0, 6). Is f strictly increasing on (0, 6) or strictly decreasing

on (0, 6)?

35. (a) Let f : (0,+∞) −→ R be the function defined by f(x) =
ex

xe
for any x ∈ (0,+∞). By using calculus, or otherwise,

prove that that f is strictly decreasing on (0, e] and f is strictly increasing on [e,+∞).
(b) Hence, or otherwise, prove that eπ > πe.

36.♢ Let f, g : R −→ R be the functions defined respectively by f(x) = xe−x2 , g(x) = x− xe−x2 for any x ∈ R.

(a) By using calculus, or otherwise, prove that f is strictly increasing on [− 1√
2
,
1√
2
].

(b) Prove that g is strictly increasing on [0,+∞).

(c) i. Prove that aeb
2

< bea
2 whenever − 1√

2
< a < b <

1√
2

.

ii. Prove that 0 <
bea

2 − aeb
2

b− a
< ea

2+b2 whenever 0 < a < b <
1√
2

.

37.♢ By using calculus, or otherwise, prove the statements below:

(a) 1 + 2x− 2x2 ≤
√
1 + 4x ≤ 1 + 2x whenever x ≥ 0.

(b) Suppose p be a positive integer. Then xp+1 − 1

p+ 1
≥ xp − 1

p
whenever x > 0.

(c) Suppose α is a rational number greater than 1. Then 1

2α−1
≤ xα + (1− x)α ≤ 1 whenever 0 ≤ x ≤ 1.

(d) sin(x) > x cos(x) whenever 0 < x < π.

(e) x sin(x) + cos(x) > 1 +
1

2
x2 cos(x) whenever 0 < x < π.
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