1. Solution.

Let a, b, c be numbers, with $a \neq 0$. Let α be a number. Let f(x) be the quadratic polynomial given by $ax^2 + bx + c$.

(a) Suppose
$$\alpha$$
 is a root of $f(x)$. Let $\beta = -\frac{b}{a} - \alpha$.

- i. We have $0 = f(\alpha) = a\alpha^2 + b\alpha + c$. Then $c = -a\alpha^2 b\alpha$. Therefore, as polynomials, $f(x) = ax^2 + bx + c = ax^2 + bx - a\alpha^2 - b\alpha^2 = a(x^2 - \alpha^2) + b(x - \alpha) = (x - \alpha)[a(x + \alpha) + b] = a(x - \alpha)(x + \alpha + \frac{b}{\alpha}) = a(x - \alpha)(x - \beta).$
- ii. We have $f(\beta) = a(\beta \alpha)(\beta \beta) = 0$. Then β is a root of f(x).
- iii. As polynomials, $ax^2 + bx + c = f(x) = a(x \alpha)(x \beta) = ax^2 a(\alpha + \beta)x + a\alpha\beta$. By comparing coefficients, we have $c = a\alpha\beta$. Then $\alpha\beta = \frac{c}{a}$.
- (b) Define $\Delta_f = b^2 4ac$.
 - i. As polynomials,

$$\begin{aligned} f(x) &= ax^2 + 2a \cdot \frac{b}{2a}x + a \cdot \frac{b^2}{4a^2} - a \cdot \frac{b^2}{4a^2} + a \cdot \frac{4ac}{a^2} = a \left[\left(x^2 + 2 \cdot \frac{b}{2a}x + \frac{b^2}{4a^2} \right) - \left(\frac{b^2 - 4ac}{4a^2} \right) \right] \\ &= a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{\Delta_f}{4a^2} \right]. \end{aligned}$$

- ii. Suppose a, b, c are real numbers.
- A. Suppose $\Delta_f \ge 0$. Define $\alpha_{\pm} = \frac{-b \pm \sqrt{\Delta_f}}{2a}$ respectively. Note that $f(\alpha_+) = a \left[\left(\alpha_+ + \frac{b}{2a} \right)^2 - \frac{\Delta_f}{4a^2} \right] = \dots = 0$. Then $f(\alpha_+)$ is a root of f(x). We have $\alpha_+ + \alpha_- = -\frac{b}{a}$. Then $\alpha_- = -\frac{b}{a} - \alpha_+$. By the result in part (a), α_- is also a root of f(x), and $f(x) = a(x - \alpha_+)(x - \alpha_-)$ as polynomials. B. Suppose suppose $\Delta_f < 0$ instead. Define $\zeta = \frac{-b + i\sqrt{-\Delta_f}}{2a}$. Further define $\bar{\zeta} = \frac{-b - i\sqrt{-\Delta_f}}{2a}$. Note that $f(\zeta) = a \left[\left(\zeta + \frac{b}{2a} \right)^2 - \frac{\Delta_f}{4a^2} \right] = \dots = 0$. Then $f(\zeta)$ is a root of f(x). We have $\zeta + \bar{\zeta} = -\frac{b}{a}$. Then $\bar{\zeta} = -\frac{b}{a} - \zeta$. By the result in part (a), $\bar{\zeta}$ is also a root of f(x), and $f(x) = a(x - \zeta)(x - \bar{\zeta})$ as polynomials. (c) Now we no longer suppose 'a, b, c are real numbers'. i. Suppose $\Delta_f \neq 0$, and σ is a square root of $\frac{\Delta_f}{4a^2}$ in \mathfrak{C} . Define $\alpha_{\pm} = -\frac{b}{2a} \pm \sigma$ respectively. Note that $f(\alpha_+) = a \left[\left(\alpha_+ + \frac{b}{2a} \right)^2 - \frac{\Delta_f}{4a^2} \right] = \dots = 0$. Then $f(\alpha_+)$ is a root of f(x).
 - We have $\alpha_+ + \alpha_- = -\frac{b}{a}$. Then $\alpha_- = -\frac{b}{a} \alpha_+$.

By the result in part (a), α_{-} is also a root of f(x), and $f(x) = a(x - \alpha_{+})(x - \alpha_{-})$ as polynomials. ii. Now suppose $\Delta_{f} = 0$ instead.

As polynomials,
$$f(x) = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{\Delta_f}{4a^2} \right] = a \left(x + \frac{b}{2a} \right)^2$$
.

2. Solution.

Let a, b, c, r be numbers, with $a \neq 0$ and $c \neq 0$ and $r \neq 0$. Let f(x) be the quadratic polynomial given by $f(x) = ax^2 + bx + c$. Suppose α, β are the roots of f(x). Further suppose $\alpha = r\beta$.

Since α, β are the roots of f(x), we have

$$\left\{ \begin{array}{rrr} \alpha+\beta &=& -b/a\\ \alpha\beta &=& c/a \end{array} \right.$$

Then we have $(r+1)\beta = \alpha + \beta = -\frac{b}{a}$ and $r\beta^2 = \alpha\beta = \frac{c}{a}$. Therefore $\frac{b^2}{a^2} = (r+1)^2\beta^2 = \frac{(r+1)^2}{r} \cdot r\beta^2 = \frac{(r+1)^2}{r} \cdot \frac{c}{a}$. Hence $rb^2 = (r+1)^2ac$.

3. Solution.

(a) We proceed to solve the inequality (\star) :

$$\begin{array}{rcrcrc} x^2 - 3x & < & 10 & --- & (\star) \\ x^2 - 3x - 10 & < & 0 \\ (x+2)(x-5) & < & 0 \\ (x+2 < 0 \text{ and } x - 5 > 0) & \text{ or } & (x+2 > 0 \text{ and } x - 5 < 0) \\ \underbrace{(x < -2 \text{ and } x > 5)}_{\text{(rejected)}} & \text{ or } & -2 < x < 5 \\ \hline \end{array}$$

(Every line is logically equivalent to the next. No checking of solution is needed.) The solution of the inequality (\star) is -2 < x < 5.

(b) We proceed to solve the system of inequalities (\star) :

$$(x+1)(x-6) \ge 8 \quad \text{and} \quad 3x-1 \ge 5 \quad (\star)$$

$$x^2 - 5x - 14 \ge 0 \quad \text{and} \quad x \ge 2$$

$$(x+2)(x-7) \ge 0 \quad \text{and} \quad x \ge 2$$

$$(x \le -2 \text{ or } x \ge 7) \quad \text{and} \quad x \ge 2$$

$$\underbrace{(x \le -2 \text{ on } x \ge 7)}_{\text{(rejected)}} \quad \text{or} \quad (x \ge 7 \text{ and } x \ge 2)$$

$$x \quad \ge 7$$

(Every line is logically equivalent to the next. No checking of solution is needed.)

- The solution of the system of inequalities (\star) is $x \ge 7$.
- (c) We proceed to solve the system of inequalities (\star) :

$$(x+1)^2 > 16 \quad \text{or} \quad 2x+5 > 7 \quad --- \quad (\star)$$

$$(x+1 < -4 \text{ or } x+1 > 4) \quad \text{or} \quad x > 1$$

$$x < -5 \text{ or } x > 3 \quad \text{or} \quad x > 1$$

$$x < -5 \quad \text{or} \quad x > 1$$

(Every line is logically equivalent to the next. No checking of solution is needed.) The solution of the system of inequalities (\star) is x < -5 or x > 1.

(d) We proceed to solve the inequality (\star) :

$$(x-1)(x-2)(x-3) \ge 0 \quad --- \quad (\star)$$

((x-1)(x-2) \le 0 and x-3 \le 0) or ((x-1)(x-2) \ge 0 and x-3 \ge 0)
(1 \le x \le 2 and x \le 3) or ((x \le 1 or x \ge 2) and x \ge 3)
1 \le x \le 2 or x \ge 3

(Every line is logically equivalent to the next. No checking of solution is needed.) The solution of the inequality (\star) is $1 \le x \le 2$ or $x \ge 3$.

(e) We proceed to solve the inequality (\star) :

$$\frac{2}{3-x} \leq 1 \quad --- \quad (\star)$$

$$2(3-x) \leq (3-x)^2 \quad \text{and } x \neq 3$$

$$(x-3)^2 + 2(x-3) \geq 0 \quad \text{and } x \neq 3$$

$$(x-1)(x-3) \geq 0 \quad \text{and } x \neq 3$$

$$(x \leq 1 \quad \text{or} \quad x \geq 3) \quad \text{and } x \neq 3$$

$$x \leq 1 \quad \text{or} \quad x > 3$$

(Every line is logically equivalent to the next. No checking of solution is needed.) The solution of the inequality (\star) is $x \leq 1$ or x > 3.

(f) We proceed to solve the inequality (\star) :

$$2x - \frac{3}{x} \ge 1 \quad --- \quad (\star)$$

$$2x^3 - 3x \ge x^2 \quad \text{and} \ x \neq 0$$

$$2x^3 - x^2 - 3x \ge 0 \quad \text{and} \ x \neq 0$$

$$x(x+1)(2x-3) \ge 0 \quad \text{and} \ x \neq 0$$

$$(-1 \le x \le 0 \quad \text{or} \quad x \ge 1.5) \quad \text{and} \ x \neq 0$$

$$-1 \le x < 0 \quad \text{or} \quad x \ge 1.5$$

(Every line is logically equivalent to the next. No checking of solution is needed.) The solution of the inequality (*) is $-1 \le x < 0$ or $x \ge 1.5$.

(g) We proceed to solve the inequality (\star) :

$$\frac{x^2 - 1}{x^2 - 4} \leq -2 \quad (\star)$$

$$(x^2 - 1)(x^2 - 4) \leq -2(x^2 - 4)^2 \quad \text{and } x \neq -2 \text{ and } x \neq 2$$

$$(x^2 - 4)[(x^2 - 1) + 2(x^2 - 4)] \leq 0 \quad \text{and } x \neq -2 \text{ and } x \neq 2$$

$$(x^2 - 4)(3x^2 - 9) \leq 0 \quad \text{and } x \neq -2 \text{ and } x \neq 2$$

$$3(x + 2)(x + \sqrt{3})(x - \sqrt{3})(x - 2) \leq 0 \quad \text{and } x \neq -2 \text{ and } x \neq 2$$

$$(-2 \leq x \leq -\sqrt{3} \text{ or } \sqrt{3} \leq x \leq 2) \quad \text{and } x \neq -2 \text{ and } x \neq 2$$

$$-2 < x \leq -\sqrt{3} \text{ or } \sqrt{3} \leq x < 2$$

(Every line is logically equivalent to the next. No checking of solution is needed.) The solution of the inequality (*) is $-2 < x \le -\sqrt{3}$ or $\sqrt{3} \le x < 2$.

(h) We proceed to solve the inequality (\star) :

$$\begin{aligned} |x^2 - 5x| &< 6 \quad --- \quad (\star) \\ x^2 - 5x > -6 \quad \text{and} \quad x^2 - 5x < 6 \\ x^2 - 5x + 6 > 0 \quad \text{and} \quad x^2 - 5x - 6 < 0 \\ (x - 2)(x - 3) > 0 \quad \text{and} \quad (x + 1)(x - 6) < 0 \\ (x < 2 \text{ or } x > 3) \quad \text{and} \quad -1 < x < 6 \\ (x < 2 \text{ and} - 1 < x < 6) \quad \text{or} \quad (x > 3 \text{ and} - 1 < x < 6) \\ -1 < x < 2 \quad \text{or} \quad 3 < x < 6 \end{aligned}$$

(Every line is logically equivalent to the next. No checking of solution is needed.) The solution of the inequality (\star) is -1 < x < 2 or 3 < x < 6.

(i) We proceed to solve the inequality (\star) :

$$\begin{aligned} \left|\frac{3x+11}{x+2}\right| &< 2 \quad -- \quad (\star) \\ \frac{|3x+11|}{|x+2|} &< 2 \\ |3x+11| &< 2|x+2| \quad \text{and } x \neq -2 \\ (3x+11)^2 &< 4(x+2)^2 \quad \text{and } x \neq -2 \\ (3x+11)^2 &< 4x^2+16x+16 \quad \text{and } x \neq -2 \\ 9x^2+66x+121 &< 4x^2+16x+16 \quad \text{and } x \neq -2 \\ x^2+10x+21 &< 0 \quad \text{and } x \neq -2 \\ (x+3)(x+7) &< 0 \quad \text{and } x \neq -2 \\ -7 < x &< -3 \quad \text{and } x \neq -2 \\ -7 < x &< -3 \end{aligned}$$

(Every line is logically equivalent to the next. No checking of solution is needed.) The solution of the inequality (\star) is -7 < x < -3.

(j) We proceed to solve the inequality (\star) :

(Every line is logically equivalent to the next. No checking of solution is needed.) The solution of the inequality (\star) is -1 < x < 1 or x < -7 or x > 7.

(k) We proceed to solve the inequality (\star) :

$$\begin{aligned} |x^2 - 3| &\leq 2|x| & --- & (\star) \\ (x^2 - 3)^2 &\leq 4x^2 \\ x^4 - 6x^2 + 9 &\leq 4x^2 \\ x^4 - 10x^2 + 9 &\leq 0 \\ (x^2 - 1)(x^2 - 9) &\leq 0 \\ (x + 3)(x + 1)(x - 1)(x - 3) &\leq 0 \\ -3 &\leq x \leq -1 & \text{or} \quad 1 \leq x \leq 3 \end{aligned}$$

(Every line is logically equivalent to the next. No checking of solution is needed.) The solution of the inequality (\star) is $-3 \le x \le -1$ or $1 \le x \le 3$.

(l) We proceed to solve the inequality (\star) :

$$|2x+1| < 3x-2 \quad (\star)$$

$$0 \le 2x+1 < 3x-2 \quad \text{or} \quad 0 \le -2x-1 < 3x-2$$

$$(x \ge -0.5 \text{ and } x > 3) \quad \text{or} \quad \underbrace{(x \le -0.5 \text{ and } x > 0.2)}_{\text{(rejected)}}$$

$$x > 3$$

(Every line is logically equivalent to the next. No checking of solution is needed.) The solution of the inequality (\star) is x > 3.

4. Solution.

Let p be a real number. Let f(x) be the quadratic polynomial given by $f(x) = x^2 + (p+1)x + (p-1)$. Suppose α, β are the roots of f(x).

(a) The discriminant Δ_f of the polynomial f(x) is given by $\Delta_f = (p+1)^2 - 4 \cdot 1 \cdot (p-1)$. We have $\Delta_f = (p+1)^2 - 4 \cdot 1 \cdot (p-1) = p^2 - 2p + 5 = (p-1)^2 + 4 \ge 4 > 0$. Therefore the roots of f(x), which are α, β , are real and distinct. (b) $(\alpha - 2)(\beta - 2) = \alpha\beta - 2(\alpha + \beta) + 4 = (p - 1) - 2[-(p + 1)] + 4 = 3p + 5.$

(c) Suppose $\beta < 2 < \alpha$.

i. Since
$$\beta < 2 < \alpha$$
, we have $\beta - 2 < 0$ and $\alpha - 2 > 0$. Then $3p + 5 = (\alpha - 2)(\beta - 2) < 0$. Therefore $p < -\frac{5}{3}$

ii. Further suppose $(\alpha - \beta)^2 < 20$. Note that $(\alpha - \beta)^2 = (\alpha + \beta)^2 - 4\alpha\beta = \Delta_f = (p-1)^2 + 4$. Since $(\alpha - \beta)^2 < 20$, we have $(p-1)^2 + 4 < 20$. Then $(p-1)^2 < 16$. Therefore -4 . Hence <math>-5 . $Recall that <math>p < -\frac{5}{3}$. Therefore $p < -\frac{5}{3}$ and -3 .Hence <math>-3 .

5. —

6. Answer.

- (a) (I) Suppose x + y > 1 and x > y
 - (II) Since
 - (III) x > y(IV) (x - y)(x + y) - (x - y) = (x - y)(x + y - 1)(V) $x^2 - y^2 > x - y$
- (b) (I) Let $x, y \in \mathbb{R}$. Suppose x > 0 and y > 0. (II) $(x+y)(x^2 - xy + y^2) - xy(x+y) = (x+y)(x^2 - 2xy + y^2) = (x+y)(x-y)^2 \ge 0$

7. Answer.

- (I) Suppose y > x > 0 and z > -y
- (II) z > -y
- (III) > 0
- (IV) Suppose
- (V) zy > zx

(VI)
$$\frac{x+z}{y+z} - \frac{x}{y} = \frac{(x+z)y - x(y+z)}{y(y+z)} > 0$$

(VII) Suppose
$$\frac{x+z}{y+z} > \frac{x}{y}$$

(VIII)
$$\frac{x+z}{y+z} \cdot y(y+z) > \frac{x}{y} \cdot y(y+z)$$

(IX) Therefore z(y - x) = zy - zx > 0. Since y > x, we have y - x > 0.

(X)
$$\frac{x+z}{y+z} > \frac{x}{y}$$
 iff $z > 0$

8. *Hint.* The key is this 'factorization':

$$\left(x^m + \frac{1}{x^m}\right) - \left(x^n + \frac{1}{x^n}\right) = \frac{(x^m - x^n)(x^{m+n} - 1)}{x^{m+n}}.$$

9. Solution.

- (a) Let $u, v, x, y \in \mathbb{R}$. We have $(ux + vy)^2 = u^2x^2 + 2uxvy + v^2y^2$. Also, we have $(u^2 + v^2)(x^2 + y^2) = u^2x^2 + u^2y^2 + v^2x^2 + v^2y^2$. Then $(u^2 + v^2)(x^2 + y^2) - (ux + vy)^2 = u^2y^2 + v^2x^2 - 2uxvy = (uy - vx)^2 \ge 0$. Therefore $(ux + vy)^2 \le (u^2 + v^2)(x^2 + y^2)$.
- (b) Let s, t be positive real numbers. \sqrt{s}, \sqrt{t} are well-defined as real numbers, and $s = (\sqrt{s})^2, t = (\sqrt{t})^2$.

$$(s+t)\left(\frac{1}{s} + \frac{1}{t}\right) = [(\sqrt{s})^2) + (\sqrt{t})^2] \left[\left(\frac{1}{\sqrt{s}}\right)^2 + \left(\frac{1}{\sqrt{t}}\right)^2\right] \ge \left(\sqrt{s} \cdot \frac{1}{\sqrt{s}} + \sqrt{t} \cdot \frac{1}{\sqrt{t}}\right)^2 = (1+1)^2 = 4$$

10. (a) *Hint*. Repeatedly apply the inequality for real numbers ' $u^2 + v^2 \ge 2uv$ '.

(b) *Hint.* Take a = r, b = s, c = t $d = \frac{r + s + t}{3}$. An alternative is to take a = r, b = s, c = t $d = \sqrt[3]{rst}$.

11. Solution.

Let c, ε be positive real numbers. Define $\delta = \sqrt{c^2 + \varepsilon} - c$.

- (a) Note that $c^2 + \varepsilon > c^2 \ge 0$. Then $\sqrt{c^2 + \varepsilon} > c$. Therefore $\delta = \sqrt{c^2 + \varepsilon} c > 0$.
- (b) Let x be a real number. Suppose $|x c| < \delta$.
 - i. We have $|x + c| = |(x c) + 2c| \le |x c| + 2c \le \delta + 2c = \sqrt{c^2 + \varepsilon} + c$.
 - ii. We have $|x^2 c^2| = |x c| \cdot |x + c| < \delta \cdot (\sqrt{c^2 + \varepsilon} + c) = (\sqrt{c^2 + \varepsilon} c)(\sqrt{c^2 + \varepsilon} + c) = c^2 + \varepsilon c^2 = \varepsilon$.

12. —