MATH1050 Exercise 1 (Answers and selected solution)

1. **Solution.**

(a) We proceed to solve the equation (*⋆*):

$$
x + \sqrt{x+1} = 11 \quad \longrightarrow \quad (*)
$$

\n
$$
\sqrt{x+1} = 11 - x
$$

\n
$$
(\sqrt{x+1})^2 = (11 - x)^2
$$

\n
$$
x+1 = x^2 - 22x + 121
$$

\n
$$
x^2 - 23x + 120 = 0
$$

\n
$$
(x-8)(x-15) = 0
$$

\n
$$
x = 8 \quad \text{or} \quad x = 15
$$

Checking:

- $8 + \sqrt{8 + 1} = 11$.
- $15 + \sqrt{15 + 1} = 19 \neq 11$.

The only solution of (\star) is $x = 8$.

(b) We proceed to solve the equation (*⋆*):

$$
2(4^{x} + 4^{-x}) - 7(2^{x} + 2^{-x}) + 10 = 0 \t\t(*)
$$

\n
$$
2(2^{x} + 2^{-x})^{2} - 7(2^{x} + 2^{-x}) + 6 = 0
$$

\n
$$
[2(2^{x} + 2^{-x}) - 3][(2^{x} + 2^{-x}) - 2] = 0
$$

\n
$$
2^{x} - \frac{3}{2} + 2^{-x} = 0 \t\t or \t\t 2^{x} - 2 + 2^{-x} = 0
$$

\n
$$
2^{2x} - \frac{3}{2} \cdot 2^{x} + 1 = 0 \t\t or \t\t 2^{2x} - 2 \cdot 2^{x} + 1 = 0
$$

\n
$$
\frac{(2^{x} - \frac{3}{4})^{2} = -\frac{7}{16}}{\frac{7}{16}} \t\t or \t\t (2^{x} - 1)^{2} = 0
$$

\n
$$
2^{x} = 1
$$

\n
$$
x = 0
$$

(Every line is logically equivalent to the next. No checking of solution is needed.) The only solution of (\star) is $x = 0$.

(c) We proceed to solve the equation (*⋆*):

$$
\log_{5-x}(215 - x^3) = 3 \longrightarrow (*)
$$

\n
$$
\frac{\ln(215 - x^3)}{\ln(5 - x)} = 3
$$

\n
$$
\ln(215 - x^3) = 3\ln(5 - x)
$$

\n
$$
215 - x^3 = (5 - x)^3
$$

\n
$$
x^2 - 5x - 6 = 0
$$

\n
$$
(x + 1)(x - 6) = 0
$$

\n
$$
x = -1 \quad \text{or} \quad x = 6
$$

Checking:

- ⁵ *[−]* (*−*1) = 6 *>* ⁰ and ²¹⁵ *[−]* (*−*1)³ = 216 *>* ⁰. We have log⁵*−*(*−*1)(215 *[−]* (*−*1)³) = log⁶ (216) = 3.
- $5 6 < 0$. Then $log_{5-6}(u)$ is not well-defined for whatever real value of *u*.

The only solution of (\star) is $x = -1$.

(d) We proceed to solve the equation (*⋆*):

$$
|x^{2} - 5x + 6| = x \t\t-(\star)
$$

\n
$$
x^{2} - 5x + 6 = x \t or \t-(x^{2} - 5x + 6) = x
$$

\n
$$
x^{2} - 6x + 6 = 0 \t or \t x^{2} - 4x + 6 = 0
$$

\n
$$
(x - 3)^{2} - 3 = 0 \t or \t (x - 2)^{2} = -2
$$

\n
$$
(x - 3 + \sqrt{3})(x - 3 - \sqrt{3}) = 0
$$

\n
$$
x = 3 - \sqrt{3} \t or \t x = 3 + \sqrt{3}
$$

(Every line is logically equivalent to the next. No checking of solution is needed.) The solution of (\star) is $x = 3 - \sqrt{3}$ or $x = 3 + \sqrt{3}$.

(e) We proceed to solve the equation (*⋆*):

$$
x|x| + 5x + 6 = 0 \t\t-(*)
$$

\n
$$
x^2 + 5x + 6 = 0 \t\t or \t\t-x^2 + 5x + 6 = 0
$$

\n
$$
(x+2)(x+3) = 0 \t\t or \t\t-(x+1)(x-6) = 0
$$

\n
$$
x = -2 \t\t or \t\t x = -3 \t\t or \t\t x = -1 \t\t or \t\t x = 6
$$

Checking:

- $(-2)|-2|+5(-2)+6=-8\neq 0.$
- $(-3)|-3|+5(-3)+6=-18 \neq 0.$
- $(-1)|-1|+5(-1)+6=0.$
- $6|6| + 5 \cdot 6 + 6 = 72 \neq 0.$

The only solution of (\star) is $x = -1$.

(f) We proceed to solve the equation (*⋆*):

$$
(x-4)^2 - 5|x-4| + 6 = 0 \t\t(\star)
$$

\n
$$
|x-4|^2 - 5|x-4| + 6 = 0
$$

\n
$$
(|x-4|-2)(|x-4|-3) = 0
$$

\n
$$
|x-4| = 2 \t\t \text{or} \t\t |x-4| = 3
$$

\n
$$
x-4 = 2 \t\t \text{or} \t\t x-4 = -2 \t\t \text{or} \t\t x-4 = 3 \t\t \text{or} \t\t x-4 = -3
$$

\n
$$
x = 6 \t\t \text{or} \t\t x = 2 \t\t \text{or} \t\t x = 7 \t\t \text{or} \t\t x = 1
$$

(Every line is logically equivalent to the next. No checking of solution is needed.)

The solution of (\star) is $x = 1$ or $x = 2$ or $x = 6$ or $x = 7$.

(g) We proceed to solve the system of equations (*⋆*):

$$
\begin{cases}\nxy + x = 6 \\
xy - y = 2\n\end{cases}
$$
\n
$$
xy + x = 6 \longrightarrow (\star_1)
$$
\n
$$
xy - y = 2 \longrightarrow (\star_2)
$$
\n
$$
x + y = 4 \text{ (by 'subtracting (\star_2) from (\star_1))'})
$$
\n
$$
y = 4 - x \longrightarrow (\star_3)
$$
\n
$$
x(4 - x) + x = 6 \text{ (by 'substituting (\star_3) into (\star_1))})
$$
\n
$$
x^2 - 5x + 6 = 0
$$
\n
$$
(x - 2)(x - 3) = 0
$$
\n
$$
x = 2 \text{ or } x = 3
$$

When $x = 2$, $y = 4 - x = 2$. When $x = 3$, $y = 4 - x = 1$. Checking:

- Suppose $x = 2$ and $y = 2$. Then $xy + x = 2 \cdot 2 + 2 = 6$. Also, $xy y = 2 \cdot 2 2 = 2$.
- Suppose *x* = 3 and *y* = 1. Then *xy* + 2 = 3 *·* 1 + 3 = 6. Also, *xy − y* = 3 *·* 1 *−* 1 = 2.

Hence the solution of the system (\star) is given by $(x, y) = (2, 2)$ or $(x, y) = (3, 1)$.

(h) We proceed to solve the system of equations (*⋆*):

$$
\begin{cases}\nx^{\log_5(y)} = 7 \\
x^{\log_5(y)} = 7 \quad (\star_1) \\
x^{\log_5(y)} = 7 \quad (\star_2) \\
\log_5(x) + \log_5(y) = \log_5(7) + 1 \quad (\star_3), \quad \text{(by 'taking logarithm in (\star_1)') } \\
\log_5(x) \cdot \log_5(y) = \log_5(7) \quad (\star_4), \quad \text{(by 'taking logarithm in (\star_2)') } \\
\log_5(x) + \log_5(y) - \log_5(x) \cdot \log_5(y) = 1 \quad \text{(by 'subtracting (\star_4) from (\star_3)') } \\
\log_5(x) \cdot \log_5(y) - \log_5(x) - \log_5(y) + 1 = 0 \\
(\log_5(x) - 1)(\log_5(y) - 1) = 0 \\
\log_5(x) = 1 \quad \text{or} \quad \log_5(y) = 1 \\
x = 5 \quad \text{or} \quad y = 5.\n\end{cases}
$$

 $\int xy = 35$

When $x = 5$, $y = 35/x = 7$. When $y = 5$, $x = 35/y = 7$. Checking:

- Suppose $x = 5$ and $y = 7$. Then $xy = 5 \cdot 7 = 35$. Also, $x^{\log_5(y)} = 5^{\log_5(7)} = 7$.
- Suppose $x = 7$ and $y = 5$. Then $xy = 7 \cdot 5 = 35$. Also, $x^{\log_5(y)} = 7^{\log_5(5)} = 7$.

Hence the solution of the system (\star) is given by $(x, y) = (5, 7)$ or $(x, y) = (7, 5)$.

2. **Solution.**

Let *c* be a real number. Consider the equation

$$
\ln(x + c) = \ln(c) + \ln(x) \quad - \quad (\star_c)
$$

with unknown *x*.

(a) Suppose (\star_c) has a real solution, say, $x = \alpha$. Then

$$
\ln(\alpha + c) = \ln(c) + \ln(\alpha)
$$

\n
$$
\ln(\alpha + c) = \ln(c\alpha)
$$

\n
$$
\alpha + c = c\alpha
$$

\n
$$
(c - 1)\alpha = c
$$

\n
$$
\alpha = \frac{c}{c - 1}
$$

Checking:

• We have
$$
\ln\left(\frac{c}{c-1} + c\right) - \ln(c) - \ln\left(\frac{c}{c-1}\right) = \dots = 0.
$$

Then $\ln\left(\frac{c}{c-1} + c\right) = \ln(c) + \ln\left(\frac{c}{c-1}\right).$

Hence (\star_c) has exactly one real solution, namely $x = \frac{c}{a}$ $\frac{c}{c-1}$.

- (b) We observe:
	- Suppose $c \leq 0$. Then $\ln(c)$ is not well-defined.
	- Suppose $0 < c < 1$. Then we have $\frac{c}{c-1}$ < 0 . Therefore $\ln \left(\frac{c}{c} \right)$ *c −* 1 \setminus is not well-defined.
- Suppose $c = 1$. Then $\frac{c}{c-1}$ is not well-defined.
- Suppose $c > 1$. Then we have $\frac{c}{c-1}$ > 0 . Therefore $\ln \left(\frac{c}{c} \right)$ *c −* 1 \setminus is well-defined. Also, $ln(c)$ is well-defined.

Moreover, we have $c + \frac{c}{c}$ *c −* 1 > 0 . Then $\ln \left(\frac{c}{c} \right)$ $\frac{c}{c-1} + c$ \setminus is well-defined.

Hence (\star_c) has a real solution iff $c > 1$.

3. **Answer.**

- (a) (I) There exist some
	- (II) $n \neq 0$ and
	- (III) there exist some $p, q \in \mathbb{Z}$ such that
	- (IV) $n \neq 0$
	- (V) $q \neq 0$
	- (VI) $mq + pn \in \mathbb{Z}$ and $nq \in \mathbb{Z}$
- (b) (I) There exist some $m, n \in \mathbb{Z}$ such that
	- (II) there exists some $p, q \in \mathbb{Z}$ such that $q \neq 0$ and $p = qy$
	- (III) $mp = n x q y = n q (xy)$
	- (IV) $nq \neq 0$
	- (V) since $m, n, p, q \in \mathbb{Z}$, we have, $mp \in \mathbb{Z}$ and $nq \in \mathbb{Z}$
- (c) i. *Hint.* Modify the proof for the statement (*S*).
	- ii. *Hint.* Modify the proof for the statement (*P*).

4. (a) **Answer.**

DGECBFA.

Alternative answers. **DGCEBFA**, **DGECFBA**, **DGCEFBA**.

- (b) **Answer.**
	- (I) Let $x, y, n \in \mathbb{Z}$. Suppose x is divisible by n or y is divisible by n.
	- (II) there exists some $k \in \mathbb{Z}$ such that $x = kn$
	- (III) *xy* = (*kn*)*y* = (*ky*)*n*
	- (IV) since $k \in \mathbb{Z}$ and $y \in \mathbb{Z}$, we have $ky \in \mathbb{Z}$
	- (V) *xy* is divisible by *n*
	- (VI) in any case, *xy* is divisible by *n*

Remark. The entries for (III), (IV) may be interchanged.

 (c) —

5. **Solution.**

Suppose a_0, a_1, a_2, \cdots are in geometric progression, with common ratio *r*. Suppose $m, n, p \in \mathbb{N}$, and $a_m = A$, $a_n = B$ and $a_p = C$.

Then $a_m = a_0 r^m$, $a_n = a_0 r^n$ and $a_p = a_0 r^p$.

Therefore

$$
A^{n-p}B^{p-m}C^{m-n} = (a_0r^m)^{n-p}(a_0r^n)^{p-m}(a_0r^p)^{m-n}
$$

= $a_0^{(n-p)+(p-m)+(m-n)} \cdot r^{m(n-p)+n(p-m)+p(m-n)} = a_0^{0}r^0 = 1.$

6. **Solution.**

Let *a, b, c* be numbers.

- (a) Suppose a, b, c are in arithmetic progression. Denote the common difference by *d*. We have $b a = d$ and $c b = d$. Note that $[(b^2 - ca) - (a^2 - bc)] = b^2 - a^2 - ca + bc = (b - a)(b + a) + (b - a)c = d(a + b + c)$. Also note that $[(c^2 - ab) - (b^2 - ca)] = c^2 - b^2 - ab + ca = (c - b)(c + b) + (c - b)a = d(a + b + c)$. Then $(b^2 - ca) - (a^2 - bc) = (c^2 - ab) - (b^2 - ca)$. Hence $a^2 - bc$, $b^2 - ca$, $c^2 - ab$ are in arithmetic progression.
- (b) Suppose $a^2 bc$, $b^2 ca$, $c^2 ab$ are in arithmetic progression. Further suppose $a + b + c \neq 0$. Then $b^2 - ca = \frac{(a^2 - bc) + (c^2 - ab)}{2}$ $\frac{16}{2}$. Therefore $2b^2 - 2ca = a^2 + c^2 - ab - bc$. Hence $0 = (a^2 - b^2) + (c^2 - b^2) + (ac - ab) + (ac - bc) = \dots = (a + c - 2b)(a + b + c).$ Since $a + b + c \neq 0$, we have $a + c - 2b = 0$. Then $b = \frac{a+b}{2}$ $\frac{1}{2}$. Therefore *a, b, c* are in arithmetic progression.

7. (a) **Solution.**

Let *r* be any number not equal to 1.

i. For each *n* ∈ **N**, write $T_n(r) = 1 + r + r^2 + \cdots + r^{n-1} + r^n$. By definition, $rT_n(r) = r + r^2 + r^3 \dots + r^n + r^{n+1}$. Therefore $(1 - r)T_n(r) = T_n(r) - rT_n(r) = 1 - r^{n+1}$. Since $r \neq 1$, we have $T_n(r) = \frac{1 - r^{n+1}}{1 - r}$ $\frac{1}{1-r}$.

ii. Now suppose $r \neq 0$ as well. Since $r \neq 1$, we have $\frac{1}{r} \neq 1$.

For each
$$
n \in \mathbb{N}
$$
, write $T_n(r) = 1 + r + r^2 + \dots + r^{n-1} + r^n$.
\nThen $T_n(\frac{1}{r}) = \frac{1 - (1/r)^{n+1}}{1 - 1/r} = \frac{1 - r^{n+1}}{r^n (1 - r)}$. Therefore\n
$$
r^n + r^{n-1} + \dots + r + 1 + \frac{1}{r} + \dots + \frac{1}{r^{n-1}} + \frac{1}{r^n} = T_n(r) + T_n(\frac{1}{r}) - 1
$$
\n
$$
= \frac{1 - r^{n+1}}{1 - r} + \frac{1 - r^{n+1}}{r^n (1 - r)} - 1
$$
\n
$$
= \frac{r^n (1 - r^{n+1}) + (1 - r^{n+1}) - r^n (1 - r^{n+1})}{r^n (1 - r)}
$$
\n
$$
= \frac{1 - r^{2n+1}}{r^n (1 - r)}
$$

(b) **Answer.**

 $A = B = 1, C = D = 2.$

Hint. Use the same trick for part (a). Start by writing $U_m(s) = 1 + 2s + 3s^2 + \cdots + ms^{m-1} + (m+1)s^m$. Then study the expression $U_m(s) - sU_m(s)$.

 $- r$)

(c) **Solution.**

Let $n \in \mathbb{N}$. Suppose a, b be any numbers.

i. Suppose $a = b$.

Then $a^{n+1} - b^{n+1} = 0 = (a - b)(a^n + a^{n-1}b + a^{n-2}b^2 + \dots + a^2b^{n-2} + ab^{n-1} + b^n).$

Suppose $a \neq b$. Then a, b are not both zero. Without loss of generality, suppose $a \neq 0$. Write $r = \frac{b}{a}$ *a* Then

$$
a^{n+1} - b^{n+1} = a^{n+1} \left[1 - \left(\frac{b}{a}\right)^{n+1} \right] = a^{n+1} (1 - r^{n+1})
$$

= $a^{n+1} (1 - r) (1 + r + r^2 + \dots + r^n)$
= $a(1 - r) \cdot a^n (1 + r + r^2 + \dots + r^n)$
= $(a - b)(a^n + a^{n-1}b + a^{n-2}b^2 + \dots + a^2b^{n-2} + ab^{n-1} + b^n)$

ii. Modifying the argument in the previous part, we obtain $(a-b)^2[a^m + 2a^{m-1}b + 3a^{m-2}b^2 + \cdots + mab^{m-1} +$ $(m+1)b^m$] = $a^{m+2} - (m+2)ab^{m+1} + (m+1)b^{m+2}$.

 $8. -$

9. *Hint.* Refer to the definition for the notion of geometric progression. Can we link up each of numbers c_1, c_2, \dots, c_n with *c*⁰ through introducing a certain number which is not explicitly mentioned in the set-up but is implicitly provided by the notion of geometric progression?