
MATH1050 Construction of the integer system from the natural number system

1. We assume all the basic properties of the natural number system, which is made up of the set N and its addition,
its multiplication and its usual ordering. In the natural number system, we may perform addition and multiplication
freely. The same cannot be said of subtraction: we cannot subtract a larger natural from a smaller one within the
natural number system.

In the procedure outlined below, we are going to construct the integer system, in which we may preform subtraction
freely. From the philosophical standpoint, the integer system is something which we do not have at this moment: we
are going to ‘create’ the integer system from the natural number system, so that we may perforem subtraction freely.

2. Theorem (1).

Define the relation RZ = (N2,N2, EZ) by

EZ = {((x, y), (s, t)) | x, y, s, t ∈ N and x+ t = s+ y}.

RZ is an equivalence relation.

The equivalence classes under RZ are the desired integers, and the quotient ZZ of N2 by RZ is the desired set of all
integers.

Remark. For each pair of natural numbers (x, y), the equivalence class [(x, y)] is given by

[(x, y)] = {..., (x− 2, y − 2), (x− 1, y − 1), (x, y), (x+ 1, y + 1), (x+ 2, y + 2), ...}.

• Suppose x > y. Write z = x− y. Then [(x, y)] = {(z, 0), (z + 1, 1), (z + 2, 2), ...}: this integer is what we desire to

be the positive integer z.

• Suppose x < y. Write z′ = y − x. Then [(x, y)] = {(0, z′), (1, z′ + 1), (2, z′ + 2)...}: this integer is what we desire

to be the negative integer −z′.

• Suppose x = y. Then [(x, y)] = {(0, 0), (1, 1), (2, 2), ...}: this integer is what we desire to be the integer 0.

3. Theorem (2).

Define the relation α = (ZZ2,ZZ, Gα) by

Gα =
{

((u, v), w)
∣

∣

∣

There exist k, ℓ,m, n ∈ N such that
u = [(k, ℓ)], v = [(m,n)] and w = [(k +m, ℓ+ n)]

}

.

α is a function.

This function α the addition in ZZ that we hope for. From now on we write α(u, v) as u+ v, and call it the sum of u, v.

4. Theorem (3).

The statements below hold:

(a) For any u, v ∈ ZZ, u+ v ∈ ZZ.

(b) For any u, v ∈ ZZ, u+ v = v + u.

(c) For any u, v, w ∈ ZZ, (u+ v) + w = u+ (v + w).

(d) For any u ∈ ZZ, [(0, 0)] + u = u+ [(0, 0)] = u.

(e) For any u ∈ ZZ, there exists some v ∈ ZZ such that u+ v = v + u = [(0, 0)].

Hence the addition of integers possesses the expected basic properties.

Corollary (4).

(ZZ,+) is an abelian group.

5. Theorem (5).

The statement below holds:

(SZ) For any u, v ∈ ZZ, there exists some unique w ∈ ZZ such that u+ w = v.

Hence subtraction can be performed freely amongst integers.

From now on, whenever u+w = v, we may write w = v− u. We call v− u the difference of v from u. We write [(0, 0)]

as 0ZZ , and call it the integer zero. We write 0ZZ − u as −u.
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6. Theorem (6).

Define the relation µ = (ZZ2,ZZ, Gµ) by

Gµ =
{

((u, v), w)
∣

∣

∣

There exist k, ℓ,m, n ∈ N such that
u = [(k, ℓ)], v = [(m,n)] and w = [(km+ ℓn, kn+ ℓm)]

}

.

µ is a function.

This function µ is the multiplication in ZZ that we hope for. From now on we write µ(u, v) as u × v, and call it the

product of u, v.

7. Theorem (7).

The statements below hold:

(a) For any u, v ∈ ZZ, u× v ∈ ZZ.

(b) For any u, v ∈ ZZ, u× v = v × u.

(c) For any u, v, w ∈ ZZ, (u× v)× w = u× (v × w).

(d) For any u, v, w ∈ ZZ, u× (v + w) = (u× v) + (u× w) and (u+ v)× w = (u× w) + (v × w).

(e) For any u ∈ ZZ, u× [(1, 0)] = [(1, 0)]× u = u.

(f) For any u, v ∈ ZZ, if u× v = 0ZZ then u = 0ZZ or v = 0ZZ .

Hence the multiplication of integers possesses the expected basic properties. From now we write [(1, 0)] as 1ZZ , and call

it the integer one.

Corollary (8).

(ZZ,+,×) is an integral domain.

8. Theorem (9).

Define the relation P = (ZZ,ZZ, GP ) by

GP =
{

(u, v)
∣

∣

∣

There exist some k, ℓ,m, n ∈ N such that
u = [(k, ℓ)], v = [(m,n)] and k + n ≤ ℓ+m

}

.

P is a total ordering in ZZ.

This P is the ‘usual ordering for integers’ that we hope for.

From now on, we write u ≤ v (or equivalently v ≥ u) exactly when (u, v) ∈ P ,.

9. Theorem (10).

The statements below hold:

(a) For any x, y ∈ N, [(x, y)] ≥ 0ZZ iff x ≥ y.

(b) For any x, y ∈ N, [(x, y)] ≤ 0ZZ iff x ≤ y.

(c) For any u, v ∈ ZZ, if u ≥ 0ZZ and v ≥ 0ZZ then u+ v ≥ 0ZZ and u× v ≥ 0ZZ .

Hence the usual ordering for integers possesses its expected basic properties.

From now on, whenever u ≥ 0ZZ , we call u a non-negative integer. Whenever u ≥ 0ZZ and u 6= 0ZZ , we write u > 0ZZ and
call u a positive integer. Whenever u ≤ 0ZZ , we call u a non-positive integer. Whenever u ≤ 0ZZ and u 6= 0ZZ , we write
u < 0ZZ and call u a negative integer.

10. Theorem (11).

Define the function ι : N −→ ZZ by ι(n) = [(n, 0)] for any n ∈ N.

The statements below hold:

(a) ι is an injective function.

(b) ι(N) = {u ∈ ZZ | u ≥ 0ZZ}.

(c) For any x, y ∈ N, ι(x+ y) = ι(x) + ι(y).

(d) For any x, y ∈ N, ι(xy) = ι(x)× ι(y).

(e) For any x, y ∈ N, (x ≤ y iff ι(x) ≤ ι(y)).

From now on we identify N with ι(N), which we call the set of all non-negative integers. We write 0ZZ = 0, and write

[(x, 0)] = x, [(0, y)] = −y for each x, y ∈ N. We identify respectively the addition, the multiplication, the usual ordering

in the natural number system and the integer system as each other. The natural number system is now recovered as a
subsystem of the integer system which we have constructed above.
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