1. Definition.

Let A be a set. A is said to be finite if there exists some $n_A \in \mathbb{N}$ such that $A \sim [[1, n_A]]$. The number n_A is called the cardinality of A.

Remark. The number n_A is uniquely determined by A. (Proof?)

2. Illustration of properties of finite sets through an example.

Consider the set $\{1, 2, 3\}$.

(1) Question.

Is there some injective function from N to $\{1, 2, 3\}$? Is there an infinite sequence with no repeated terms in $\{1, 2, 3\}$?

Answer and reason.

No. Were there an infinite sequence $(a_n)_{n=0}^{\infty}$ with no repeated terms in $\{1, 2, 3\}$, we would have $\{a_0, a_1, a_2\} = \{1, 2, 3\}$ and then a_3 would have to be one of a_0, a_1, a_2 .

(2) Question.

Is there some proper subset U of $\{1, 2, 3\}$ satisfying $\{1, 2, 3\} \sim U$?

Answer and reason.

No. (Heuristic argument.) Every subset of $\{1, 2, 3\}$ has at most two elements, but $\{1, 2, 3\}$ has three elements. They are not 'of the same size'.

(3) Question.

Is there some function $\varphi : \{1, 2, 3\} \longrightarrow \{1, 2, 3\}$ which is injective and not surjective? Answer and reason.

No. There are six injective functions from $\{1, 2, 3\}$ to $\{1, 2, 3\}$. They are given by:

$\varphi_1(1) = 1, \ \varphi_1(2) = 2, \ \varphi_1(3) = 3.$	$\varphi_4(1) = 1, \ \varphi_4(2) = 3, \ \varphi_4(3) = 2.$
$\varphi_2(1) = 2, \varphi_2(2) = 3, \varphi_2(3) = 1.$	$\varphi_5(1) = 2, \ \varphi_5(2) = 1, \ \varphi_5(3) = 3.$
$\varphi_3(1) = 3, \varphi_3(2) = 1, \varphi_3(3) = 2.$	$\varphi_6(1) = 3, \varphi_6(2) = 2, \varphi_6(3) = 1.$

They are all surjective.

(4) Question.

Is there some function $\psi : \{1, 2, 3\} \longrightarrow \{1, 2, 3\}$ which is surjective and not injective? Answer and reason.

No. There are six surjective functions from $\{1, 2, 3\}$ to $\{1, 2, 3\}$. They are given by:

$\psi_1(1) = 1, \ \psi_1(2) = 2, \ \psi_1(3) = 3.$	$\psi_4(1) = 1, \ \psi_4(2) = 3, \ \psi_4(3) = 2.$
$\psi_2(1) = 2, \ \psi_2(2) = 3, \ \psi_2(3) = 1.$	$\psi_5(1) = 2, \ \psi_5(2) = 1, \ \psi_5(3) = 3.$
$\psi_3(1) = 3, \ \psi_3(2) = 1, \ \psi_3(3) = 2.$	$\psi_6(1) = 3, \ \psi_6(2) = 2, \ \psi_6(3) = 1.$

They are all injective.

We can ask the same questions for every other finite set, and obtain the same answers along the same line of reasoning.

3. Theorem (XIX). (Characterization of finite sets.)

Let A be a set. The statements below are equivalent:

- (1) A is finite.
- (2) No proper subset of A is of cardinality equal to A.
- (3) For any function φ from A to A, if φ is injective then φ is surjective.
- (4) For any function ψ from A to A, if ψ is surjective then ψ is injective.

Proof of Theorem (XIX). A very tedious exercise in mathematical induction.

4. Definition.

Let A be a set. A is said to be **infinite** if $N \leq A$.

Remark. Heuristic idea in this definition: A is infinite iff A contains at least a 'copy' of \mathbb{N} as a subset.

Examples. $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, [0, 1]$, line segments, circles, squares, discs in the plane \mathbb{R}^2, \dots

5. Illustration of properties of infinite sets through an example.

Consider the set [0, 1].

(1) Question.

Is there some injective function from N to [0, 1]? Is there an infinite sequence with no repeated terms in [0, 1]? Answer and reason.

Yes. One such infinite sequence is $\{1/2^n\}_{n=0}^{\infty}$. So an injective function g from \mathbb{N} to [0,1] is given by $g(n) = 1/2^n$ for any $n \in \mathbb{N}$.

(2) Question.

Is there some proper subset U of [0,1] satisfying $[0,1] \sim U$? Answer and reason. Yes. One such set is [0,1).

(3) Question.

Is there some function $\varphi: [0,1] \longrightarrow [0,1]$ which is injective and not surjective?

Answer and reason.

Yes. One such function is given by $\varphi: [0,1] \longrightarrow [0,1]$, where $S = \{1/2^n \mid n \in \mathbb{N}\}$ and

$$\varphi(x) = \begin{cases} x & \text{if } x \in [0,1] \backslash S \\ x/2 & \text{if } x \in S \end{cases}$$

(Note that for any $x \in [0, 1]$, we have $\varphi(x) \neq 1$.)

(4) Question.

Is there some function $\psi : [0, 1] \longrightarrow [0, 1]$ which is surjective and not injective? Answer and reason.

Yes. One such function is given by $\psi : [0,1] \longrightarrow [0,1]$, where $S = \{1/2^n \mid n \in \mathbb{N}\}$ and

$$\psi(x) = \begin{cases} x & \text{if } x \in [0,1] \backslash S \\ 2x & \text{if } x \in S \backslash \{1\} \\ 1 & \text{if } x = 1 \end{cases}$$

(Note that we have $\psi(1) = \psi(1/2) = 1$.)

We can ask the same questions for every other infinite set, and and obtain the same answers along the same line of reasoning.

6. Theorem (XX). (Characterization of infinite sets.)

Let A be a set. The statements below are equivalent:

- (1) A is infinite. $(\mathbb{N} \leq A.)$
- (1) There exists some subset S of A such that $\mathbb{N} \sim S$.
- (1") There exists some subset T of A such that $\mathbb{N} \leq T$.
- (2) There exists some proper subset U of A such that $A \sim U$.
- (2) There exists some proper subset V of A such that $A \leq V$.
- (3) There exists some function φ from A to A such that φ is injective and φ is not surjective.
- (4) There exists some function ψ from A to A such that ψ is surjective and ψ is not injective.

Remark. By Theorem (XIX) and Theorem (XX), every set is finite or infinite, but not both.

7. Proof of Theorem (XX).

Let A be a set.

(a) Suppose A is infinite.

[We want to deduce that there exists some proper subset U of A such that $A \sim U$.] Pick some injective function $g : \mathbb{N} \longrightarrow A$.

Define z = g(0). Define $U = A \setminus \{z\}$.

Note that U is a proper subset of A.

Define the relation h = (A, U, H) by

$$H = \{(x, x) \mid x \in A \setminus g(\mathbb{N})\} \cup \{(g(n), g(n+1)) \mid n \in \mathbb{N}\}$$

h is a bijective function from A to U. Hence $A{\sim}U.$

[Note that the function $\mathrm{id}_{A\setminus g(\mathbb{N})}$ is bijective. Also note that the function from $g(\mathbb{N})$ to $g(\mathbb{N})\setminus\{z\}$ given by $n \mapsto n+1$ for any $n \in \mathbb{N}$ is bijective. The bijective function h is obtained by glueing these two bijective functions according the Glueing Lemma.]

(b) Suppose there exists some proper subset U of A such that $A \sim U$.

[We want to deduce that there exists some function φ from A to A such that φ is injective and φ is not surjective.] Pick some bijective function $h: A \longrightarrow U$.

Denote by $\iota_U: U \longrightarrow A$ by $\iota_U(x) = x$ for any $x \in U$.

Define the function $\varphi: A \longrightarrow A$ by $\varphi = \iota_U \circ h$.

Since h, ι_U are both injective, φ is also injective.

Note that $\varphi(A) = (\iota_U \circ h)(A) = \iota_U(h(A)) = \iota_U(U) = U \subsetneq A$. Then φ is not surjective.

(c) Suppose there exists some function φ from A to A such that φ is injective and φ is not surjective.

[We want to deduce that A is infinite according to definition. We are going to contruct an infinite sequence in A with no repeated terms.]

Since φ is not surjective, $A \setminus \varphi(A) \neq \emptyset$.

Pick some $b \in A \setminus \varphi(A)$. Define $b_0 = b$. For any $m \in \mathbb{N} \setminus \{0\}$, we define $b_m = \varphi(b_{m-1})$. By definition, for each $n \in \mathbb{N}$ we have $b_n = (\varphi \circ \varphi \circ \cdots \circ \varphi \circ \varphi)(b)$. (Why? Apply mathematical induction.)

$$n$$
 times

Then, by the injectivity of φ , we have $b_j \neq b_k$ whenever $j \neq k$. (Why?) It follows that the function $f : \mathbb{N} \longrightarrow A$ defined by $f(n) = b_n$ for any $n \in \mathbb{N}$ is an injective function. Therefore $\mathbb{N} \leq A$. Hence A is infinite.

(d) Suppose there exists some function φ from A to A such that φ is injective and φ is not surjective. [We want to deduce that there exists some function ψ from A to A such that ψ is surjective and ψ is not injective.] Note that $A \neq \emptyset$. (Why?)

Define the function $\hat{\varphi}: A \longrightarrow \varphi(A)$ by $\hat{\varphi}(x) = \varphi(x)$ for any $x \in A$.

By the injectivity of φ , the function $\hat{\varphi}$ is injective.

By the definition of $\hat{\varphi}$, we have $\hat{\varphi}(A) = \varphi(A)$. Then $\hat{\varphi}$ is surjective.

Therefore $\hat{\varphi}$ is a bijective function.

Since φ is not surjective, $A \setminus \varphi(A) \neq \emptyset$. Pick some $z_0 \in A \setminus \varphi(A)$.

Define the function $\psi: A \longrightarrow A$ by

$$\psi(y) = \begin{cases} \hat{\varphi}^{-1}(y) & \text{if } y \in \varphi(A) \\ z_0 & \text{if } y \in A \setminus \varphi(A) \end{cases}$$

We have $\psi(A) \supset \psi(\varphi(A)) = \psi(\hat{\varphi}(A)) = \hat{\varphi}^{-1}(\hat{\varphi}(A)) = A$. Then ψ is surjective.

We verify that ψ is not injective:

• Since $z_0 \in A \setminus \varphi(A)$, we have $z_0 \neq \varphi(z_0)$. We have $\psi(z_0) = z_0$ and $\psi(\varphi(z_0)) = \hat{\varphi}^{-1}(\hat{\varphi}(z_0)) = z_0$. Then $\psi(z_0) = \psi(\varphi(z_0))$. Therefore ψ is not injective. (e) Suppose there exists some function ψ from A to A such that ψ is surjective and ψ is not injective.

[We want to deduce that there exists some function φ from A to A such that φ is injective and φ is not surjective.] By the surjectivity of ψ , for any $x \in A$, there exists some $y_x \in A$ such that $\psi(y_x) = x$. [Here we need the Axiom of Choie.]

Define the function $\varphi : A \longrightarrow A$ by $\varphi(x) = y_x$ for any $x \in A$. We verify that φ is injective:

• Pick any $x, x' \in A$. Suppose $\varphi(x) = \varphi(x')$. Then $y_x = y_{x'}$. Therefore $x = \varphi(y_x) = \varphi(y_{x'}) = x'$. So φ is injective.

We verify that φ is not surjective:

• Since ψ is not injective, there exist some $x_0, z_0 \in A$ such that $y_{x_0} \neq z_0$ and $\psi(y_{x_0}) = \psi(z_0)$. By the definition of z_0 , we have $\psi(z_0) = x_0$ and $z_0 \neq y_{x_0}$. Then by the definition of φ , we have $z_0 \notin \varphi(A)$. So φ is not surjective.