1. Definition.
Let A be a set.
A is said to be finite if there exists some ny € N such that A~[1,n4].

The number ny is called the cardinality of A.

Remark.
The number n 4 is uniquely determined by A. (Proof?)
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2. Illustration of properties of finite sets through an example.
Consider the set {1, 2, 3}.

(1) Question. |
[s there some injective function from N to {1,2,3}7 Is there an infinite sequence with no
repeated terms in {1,2,3}7
Answer and reason.
No. Were there an infinite sequence (a,, )%, with no repeated terms in {1, 2, 3}, we would
have {ag, a1, as} = {1,2,3} and then az would have to be one of ag, ay, as.

(2) Question.
Is there some proper subset U of {1, 2,3} satisfying {1, 2,3}~U?
Answer and reason. ‘
No. (Heuristic argument.) FEvery subset of {1,2,3} has at most two elements, but
{1, 2,3} has three clements. They are not ‘of the same size’.



(3) Question.
[s there some function ¢ : {1,2,3} — {1, 2,3} which is injective and not surjective”?

Answer and reason.
No. There are six injective functions from {1, 2,3} to {1,2,3}. They are given by:

p1(1) =1, p1(2) = 2, p1(3) = 3. oa(1) =1, pa(2) = 3, 0u(3) =2
pa(1) = 2, p2(2) =3, 2(3) = 1. ps(1) =2, p5(2) =1, p5(3) = 3.
p3(1) =3, p3(2) = 1, p3(3) = 2. o6(1) = 3, 05(2) = 2, p(3) = 1

They are all surjective.

(4) Question. |
[s there some function v : {1,2,3} — {1, 2,3} which is surjective and not injective?

Answer and reason.
No. There are six surjective functions from {1,2,3} to {1,2,3}. They are given by:

Pi(1) =1, 91(2) = 2, ¥1(3) = 3. P4(1) = 1, 9a(2) = 3, Pa(3) =

Po(1) = 2, 9Pa(2) = 3, a(3) = 1. Ps(1) = 2, ¥s(2) = 1, ¥5(3) = 3.

P3(1) =3, ¥3(2) = 1, 3(3) = 2. Ps(1) = 3, ¥6(2) = 2, ¥6(3) = 1.
They are all injective. |

We can ask the same questions for every other finite set, and obtain the same answers along

the same line of reasoning.



3. Theorem (XIX). (Characterization of finite sets.)

Let A be a set. The statements below are equivalent:

1) A is finite.

)

2) No proper subset of A is of cardinality equal to A.

3) For any function ¢ from A to A, if ¢ is injective then ¢ is surjective.
)

4) For any function v from A to A, if 1 is surjective then v Is injective.

Proof of Theorem (XIX). A very tedious exercise in mathematical induction.



4. Definition.
Let A be a set.
A is said to be infinite if NSA.
Remark.

Heuristic idea in this definition: A is infinite iff A contains at least a ‘copy’ of N as a subset.
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Examples.

N,Z,Q,R,C,[0,1], line segments, circles, squares, discs in the plane R?; ...



5. Illustration of properties of infinite sets through an example.
Consider the set [0, 1].

(1) Question.

Is there some injective function from N to [0,1]?7 Is there an infinite sequence with no
repeated terms in [0, 1]7

Answer and reason.

Yes. One such infinite sequence is {1/2"}°° . So an injective function ¢ from N to [0, 1]
is given by g(n) = 1/2" for any n € N.
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[s there some proper subset U of [0, 1] satisfying [0, 1]~U?
Answer and reason.
Yes. One such set is [0, 1).



(3) Question. |
Is there some function ¢ : [0, 1] — [0, 1] which is injective and not surjective?

Answer and reason.
Yes. One such function is given by ¢ : [0, 1] — [0, 1], where S = {1/2" | n € N} and

w(x){x if z€[0,1)\S
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(4) Question.
Is there some function 1 : [0, 1] — [0, 1] which is surjective and not injective?

Answer and reason.
Yes. One such function is given by 4 : [0, 1] — [0, 1], where S = {1/2" | n € N} and

(2 it ze0,1\S
W(x) =4 2 it z € S\{1}

\ 1 fz=1
(Note that we have (1) = (1/2) = 1.) s
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We can ask the same questions for every other infinite set, and and obtain the same answers

along the same line of reasoning.



6. Theorem (XX). (Characterization of infinite sets.)

Let A be a set. The statements below are equivalent:

(1) A is infinite. (NSA.)

(1) There exists some subset S of A such that N~S.

(2) There exists some proper subset U of A such that A~U.

)
)
(17) There exists some subset 1" of A such that NST.
)
(2") There exists some proper subset V' of A such that ASV.
)

(3) There exists some function ¢ from A to A such that ¢ is injective and ¢ is not
surjective.

(4) There exists some function ¢ from A to A such that ¢ is surjective and 1 is not

injective.

Remark.
By Theorem (XIX) and Theorem (XX), every set is finite or infinite, but not both.
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