1. Definition.

Let A be a set.

A is said to be finite if there exists some $n_A \in \mathbb{N}$ such that $A \sim [1, n_A]$. The number n_A is called the cardinality of A.

Remark.

The number n_A is uniquely determined by A. (Proof?)

$$\exists n_A \in \mathbb{N}$$
,
 $g: \mathbb{L}_{1}, n_A \mathbb{I} \to A$
Such that
 $g: \mathbb{L}_{2}, n_A \mathbb{I} \to A$
 $g: \mathbb{L}_{3}, n_A \mathbb{I} \to A$

$$A = \left\{ g(1), g(2), g(3), \dots, g(n_A) \right\}$$

For any $k, m \in \mathbb{I}_1, n_A \mathbb{I}_1$, if $k \neq m$ then $g(k) \neq g(m)$.
So A has exactly n_A elements.

Convention:
$$II, oI = \emptyset$$
.
Here $N_A = 0$ iff $A = \emptyset$.

2. Illustration of properties of finite sets through an example.

Consider the set $\{1, 2, 3\}$.

(1) Question.

Is there some injective function from \mathbb{N} to $\{1, 2, 3\}$? Is there an infinite sequence with no repeated terms in $\{1, 2, 3\}$?

Answer and reason.

No. Were there an infinite sequence $(a_n)_{n=0}^{\infty}$ with no repeated terms in $\{1, 2, 3\}$, we would have $\{a_0, a_1, a_2\} = \{1, 2, 3\}$ and then a_3 would have to be one of a_0, a_1, a_2 .

(2) Question.

Is there some proper subset U of $\{1, 2, 3\}$ satisfying $\{1, 2, 3\} \sim U$? Answer and reason.

No. (Heuristic argument.) Every subset of $\{1, 2, 3\}$ has at most two elements, but $\{1, 2, 3\}$ has three elements. They are not 'of the same size'.

(3) Question.

Is there some function $\varphi: \{1,2,3\} \longrightarrow \{1,2,3\}$ which is injective and not surjective? Answer and reason.

No. There are six injective functions from $\{1, 2, 3\}$ to $\{1, 2, 3\}$. They are given by:

$$\varphi_1(1) = 1, \ \varphi_1(2) = 2, \ \varphi_1(3) = 3.$$
 $\varphi_2(1) = 2, \ \varphi_2(2) = 3, \ \varphi_2(3) = 1.$
 $\varphi_3(1) = 3, \ \varphi_3(2) = 1, \ \varphi_3(3) = 2.$
 $\varphi_4(1) = 1, \ \varphi_4(2) = 3, \ \varphi_4(3) = 2.$
 $\varphi_5(1) = 2, \ \varphi_5(2) = 1, \ \varphi_5(3) = 3.$
 $\varphi_6(1) = 3, \ \varphi_6(2) = 2, \ \varphi_6(3) = 1.$

They are all surjective.

(4) Question.

Is there some function $\psi: \{1,2,3\} \longrightarrow \{1,2,3\}$ which is surjective and not injective? Answer and reason.

No. There are six surjective functions from $\{1, 2, 3\}$ to $\{1, 2, 3\}$. They are given by:

$$\psi_1(1) = 1, \ \psi_1(2) = 2, \ \psi_1(3) = 3.$$
 $\psi_4(1) = 1, \ \psi_4(2) = 3, \ \psi_4(3) = 2.$ $\psi_2(1) = 2, \ \psi_2(2) = 3, \ \psi_2(3) = 1.$ $\psi_5(1) = 2, \ \psi_5(2) = 1, \ \psi_5(3) = 3.$ $\psi_3(1) = 3, \ \psi_3(2) = 1, \ \psi_3(3) = 2.$ $\psi_6(1) = 3, \ \psi_6(2) = 2, \ \psi_6(3) = 1.$

They are all injective.

We can ask the same questions for every other finite set, and obtain the same answers along the same line of reasoning.

- 3. Theorem (XIX). (Characterization of finite sets.)

 Let A be a set. The statements below are equivalent:
 - (1) A is finite.
 - (2) No proper subset of A is of cardinality equal to A.
 - (3) For any function φ from A to A, if φ is injective then φ is surjective.
 - (4) For any function ψ from A to A, if ψ is surjective then ψ is injective.

Proof of Theorem (XIX). A very tedious exercise in mathematical induction.

4. Definition.

Let A be a set.

A is said to be infinite if $\mathbb{N} \lesssim A$.

Remark.

Heuristic idea in this definition: A is infinite iff A contains at least a 'copy' of \mathbb{N} as a subset.

Examples.

 $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, [0, 1],$ line segments, circles, squares, discs in the plane \mathbb{R}^2 , ...

5. Illustration of properties of infinite sets through an example.

Consider the set [0, 1].

(1) Question.

Is there some injective function from \mathbb{N} to [0,1]? Is there an infinite sequence with no repeated terms in [0, 1]?

Answer and reason.

Yes. One such infinite sequence is $\{1/2^n\}_{n=0}^{\infty}$. So an injective function g from N to [0,1]is given by $g(n) = 1/2^n$ for any $n \in \mathbb{N}$.

(2) Question.

Is there some proper subset U of [0,1] satisfying $[0,1] \sim U$? Answer and reason.

Yes. One such set is [0, 1).

(3) Question.

Is there some function $\varphi:[0,1] \longrightarrow [0,1]$ which is injective and not surjective? Answer and reason.

Yes. One such function is given by $\varphi:[0,1] \longrightarrow [0,1]$, where $S=\{1/2^n \mid n \in \mathbb{N}\}$ and

$$\varphi(x) = \begin{cases} x & \text{if } x \in [0, 1] \backslash S \\ x/2 & \text{if } x \in S \end{cases}$$

(Note that for any $x \in [0, 1]$, we have $\varphi(x) \neq 1$.) [0,1] VS [0,1]~5

(4) Question.

Is there some function $\psi : [0,1] \longrightarrow [0,1]$ which is surjective and not injective? Answer and reason.

Yes. One such function is given by $\psi:[0,1] \longrightarrow [0,1]$, where $S=\{1/2^n \mid n \in \mathbb{N}\}$ and

$$\psi(x) = \begin{cases} x & \text{if } x \in [0,1] \backslash S \\ 2x & \text{if } x \in S \backslash \{1\} \\ 1 & \text{if } x = 1 \end{cases}$$

(Note that we have $\psi(1) = \psi(1/2) = 1$.)

We can ask the same questions for every other infinite set, and and obtain the same answers along the same line of reasoning.

6. Theorem (XX). (Characterization of infinite sets.)

Let A be a set. The statements below are equivalent:

- (1) A is infinite. ($\mathbb{N} \lesssim A$.)
- (1') There exists some subset S of A such that $\mathbb{N} \sim S$.
- (1") There exists some subset T of A such that $\mathbb{N} \lesssim T$.
- (2) There exists some proper subset U of A such that $A \sim U$.
- (2') There exists some proper subset V of A such that $A \lesssim V$.
- (3) There exists some function φ from A to A such that φ is injective and φ is not surjective.
- (4) There exists some function ψ from A to A such that ψ is surjective and ψ is not injective.

Remark.

By Theorem (XIX) and Theorem (XX), every set is finite or infinite, but not both.

Assumption: A is white. g(k) \$ g(m) • 3(3) • 3(2) itjective • 9(1) • 3(0) A13(M) 3 (M) Cordusin. 3(0) g(w) 9(1) 9(3) The function g(2) h: A > A { 8(0) } 0000 defined by 'glued together' x if x eg(N) h(x) =Vid Arg(M) (ginti) if x=g(n) for some hear is a bijective fuction. 0000 g(1) g(2) g(nti) 3(3) 3(4) g(N) \{g(0)} A > 3(M)

Assumption. These exists some function 4(A) $\varphi(A) \subseteq A$. 9: A > A such that 9 is bjective and q is not surjective. 6 ¢ 9(A). 4(A) 4(P(A)) 9(A) 9(A) Condusion. 9(9(A)) φ(φ(φ(A))) b3= b=9(b1) b=4(b0) b= b $\overrightarrow{\varphi}$ The Afrite Sequence {bn3n=0 The fraction f: N > A In fact, for each mEN, defined 'inductively' by

by

by

con infinite sequence defined by f(n)= by for any ne 1N is an injective function. Hence N & A. in A with no repeated terms.

Assumption.
There exists some function $\varphi: A \to A$ such that φ is injective and φ is not surjective.

of a hjective and not surjective. 4(A) $x \mapsto \varphi(x)$ for each XEA. A3.5E sudthat ₹, ¢ Ψ(A). The furtion $\hat{\varphi}: A \to \hat{\varphi}(A)$ defined by Q(x)=Q(x) for any x ∈ A is a bijective function.

Conclusion.

The function $\psi: A \to A$ defined by $\psi(y) = \{ \widehat{\varphi}^{-1}(y) \text{ if } y \notin \Psi(A) \}$ is surjective but not injective.

Assumption.
There exists some function Y: A > A such that
Y is surjective and Y is not injective.

Conclusion

The function $\varphi: A \Rightarrow A$ defined by $\varphi(x) = \varphi(x) = \varphi(x)$ for any $x \in A$ is injective and not surjective.