1. Recall:

(a) **Definition.**

Let A, B be sets. The set Map(A, B) is defined to be the set of all functions from A to B.

Remark. Map(N, B) is the set of all infinite sequences in B: each $\varphi \in \mathsf{Map}(\mathsf{N}, B)$ is the infinite sequence $(\varphi(0), \varphi(1), \varphi(2), ..., \varphi(n), \varphi(n+1), ...)$.

- (b) **Example** (ϵ). Let A be a set. $\mathfrak{P}(A) \sim \mathsf{Map}(A, \{0, 1\})$.
- (c) **Theorem (VI).** There is no surjective function from N to $Map(N, \{0, 1\})$.
- (d) Corollary (VII). There is no bijective function from N to Map(N, $\{0,1\}$). (Hence N \downarrow Map(N, $\{0,1\}$).)
- (e) **Theorem (VIII)**. Let A be a set. $A \downarrow \mathsf{Map}(A, \{0, 1\})$. $A \downarrow \mathfrak{P}(A)$.
- 2. Theorem (XIII). (Baby version of Cantor's Theorem.)

 $N < Map(N, \{0, 1\}).$

Proof.

By Corollary (VII), $\mathbb{N} \not\sim \mathsf{Map}(\mathbb{N}, \{0, 1\})$. We now prove that $\mathbb{N} \lesssim \mathsf{Map}(\mathbb{N}, \{0, 1\})$:

• For any $m \in \mathbb{N}$, define $\delta_m : \mathbb{N} \longrightarrow \{0,1\}$ by

$$\delta_m(n) = \begin{cases} 1 & \text{if} & n = m \\ 0 & \text{if} & n \neq m \end{cases}$$

Define $\Delta : \mathbb{N} \longrightarrow \mathsf{Map}(\mathbb{N}, \{0, 1\})$ by $\Delta(n) = \delta_n$ for any $n \in \mathbb{N}$.

 Δ is an injective function. (Why?)

Hence $\mathbb{N} \lesssim \mathsf{Map}(\mathbb{N}, \{0, 1\})$.

We now have $\mathbb{N} \lesssim \mathsf{Map}(\mathbb{N}, \{0, 1\})$ and $\mathbb{N} \downarrow \mathsf{Map}(\mathbb{N}, \{0, 1\})$. It follows that $\mathbb{N} < \mathsf{Map}(\mathbb{N}, \{0, 1\})$.

3. Theorem (XIV). (Cantor's Theorem.)

Let A be a set. $A < \mathsf{Map}(A, \{0, 1\})$. $A < \mathfrak{P}(A)$.

Proof

Let A be a set. By Theorem (VIII), $A \not\sim \mathsf{Map}(A, \{0,1\})$. We generalize the argument for Theorem (XIII) to prove that $A \lesssim \mathsf{Map}(A, \{0,1\})$:

• Recall that for any $x \in A$, the function $\chi^A_{\{x\}}: A \longrightarrow \{0,1\}$ is given by

$$\chi_{\{x\}}^{A}(y) = \begin{cases}
1 & \text{if } y = x \\
0 & \text{if } y \neq x
\end{cases}$$

 $(\chi^A_{\{x\}}$ is the characteristic function of $\{x\}$ in A.)

Define the function $\Delta: A \longrightarrow \mathsf{Map}(A, \{0,1\})$ by $\Delta(x) = \chi^A_{\{x\}}$ for any $x \in A$. Δ is an injective function from A to $\mathsf{Map}(A, \{0,1\})$. (Why?) Hence $A \lesssim \mathsf{Map}(A, \{0,1\})$.

We now have $A \lesssim \mathsf{Map}(A, \{0, 1\})$ and $A \not\sim \mathsf{Map}(A, \{0, 1\})$.

It follows that $A < \mathsf{Map}(A, \{0, 1\})$. Since $\mathfrak{P}(A) \sim \mathsf{Map}(A, \{0, 1\})$, we have $A < \mathfrak{P}(A)$. (Why?)

4. Question. Note that $\mathbb{Q} \leq \mathbb{R}$. Is it true that $\mathbb{Q} \sim \mathbb{R}$, or that $\mathbb{Q} < \mathbb{R}$?

Lemma (XV).

Let A, B, C be sets. Suppose $A \leq B$ and $B \leq C$. Also suppose A < B or B < C. Then A < C.

Proof.

Let A, B, C be sets. Suppose $A \lesssim B$ and $B \lesssim C$. Also suppose A < B or B < C.

Since $A \lesssim B$ and $B \lesssim C$, we have $A \lesssim C$.

Since A < B or B < C, we have $A \not h$ or $B \not h$. We verify that $A \not h$:

• Suppose it were true that $A \sim C$. Then $C \lesssim A$.

Since $B \lesssim C$ and $C \lesssim A$, we would have $B \lesssim A$. Then, since $A \lesssim B$ and $B \lesssim A$, we would have $A \sim B$ according to the Schröder-Bernstein Theorem.

Since $C \lesssim A$ and $A \lesssim B$, we would have $C \lesssim B$. Then, since $B \lesssim C$ and $C \lesssim B$, we would have $B \sim C$ according to the Schröder-Bernstein Theorem.

Hence $A \sim B$ and $B \sim C$. But by assumption, $A \not \sim B$ or $B \not \sim C$. Contradiction arises. Hence $A \not \sim C$ in the first place.

Then, since $A \lesssim C$ and $A \not\sim C$, we have A < C.

Theorem (XVI).

N < [0,1]. N < IR. Q < IR.

Proof.

 $N \lesssim Map(N, \{0, 1\}) \lesssim Map(N, [0, 9]) \sim [0, 1] \sim IR.$

Also, $N < Map(N, \{0, 1\})$.

Then, by Lemma (XV), $\mathbb{N} < [0,1]$ and $\mathbb{N} < \mathbb{R}$.

Since $\mathbb{Q} \sim \mathbb{N}$, we also have $\mathbb{Q} < \mathbb{R}$.

Remark. Hence there are much much more real numbers than there are rational numbers.

5. Question. Why are 'Venn diagram arguments' not good enough?

Theorem (XVII.)

There exists some set T such that S < T for any subset S of \mathbb{R}^2 .

Proof.

Define $T = \mathfrak{P}(\mathbb{R})$.

Pick any subset S of \mathbb{R}^2 . We have $S \lesssim \mathbb{R}^2 \sim \mathbb{R}$. By Cantor's Theorem, $\mathbb{R} < \mathfrak{P}(\mathbb{R}) = T$. Then by Lemma (XV), we have S < T.

Remark.

When we draw a Venn diagram for a set, say, A, we are 'identifying' the set A with some subset, say, B, of \mathbb{R}^2 , in the sense that the elements of A are 'identified' as the points in B, via some bijective function from A to B. This bijective function guarantees that distinct elements of A are identified as distinct points of B. So we are implicitly assuming that there is an injective function from A to \mathbb{R}^2 .

But now we know that there are sets which are too 'large' to be draw in a Venn diagram.

6. Question. Is there any 'universal set', which contains every conceivable object as its element?

Theorem (XVIII).

Denote $\{x \mid x = x\}$ by U. The mathematical object U is not a set.

Proof.

Suppose U were a set. Then, by Cantor's Theorem, $U < \mathsf{Map}(U, \{0, 1\})$.

For any $\varphi \in \mathsf{Map}(U, \{0, 1\})$, we would have $\varphi = \varphi$, and hence $\varphi \in U$.

It would follow that $Map(U, \{0, 1\}) \subset U$.

Then $\mathsf{Map}(U,\{0,1\}) \lesssim U$. Therefore $U < \mathsf{Map}(U,\{0,1\}) \lesssim U$.

By Lemma (XV), U < U. In particular, $U \not\sim U$. There would be no bijective function from U to U. But id_U is a bijective function from U to U. Contradiction arises.

Hence U is not a set in the first place.

Remark. Hence if we insist Cantor's Theorem to be a true statement, then there is no such thing as a 'universal set'. This is known as **Cantor's Paradox**.