
MATH1050 Schröder-Bernstein Theorem

1. Theorem (XI). (Schröder-Bernstein Theorem.)

Let A,B be sets. Suppose A.B and B.A. Then A∼B.

We postpone the proof of the Schröder-Bernstein Theorem. For the moment, we take for granted the validity of this
result and see its applications in various examples.

Remark.

What is so special about Schröder-Bernstein Theorem?

Recall the definition for the notion of equal cardinality:

A∼B iff there is a bijective function from A to B.

Imagine we want to verify that two given sets, say, A,B, are of equal cardinality. If we adhere to definition, we have
to write down a relation, say, h, from A to B and verify that h is a bijective function. It is very often no easy task,
even when A,B are not very complicated sets. (Recall how we verify [0, 1]∼[0, 1) by constructing a bijective function

from [0, 1] to [0, 1), in the Handout Sets of equal cardinality. The difficulty in this specific example arises from the
fact that we are not used to thinking of functions which do not look ‘nice’: in this case a function is not continuous
at many points is involved. But this is the price for ensuring that what we write down is a bijective function.) The
Schröder-Bernstein Theorem offers a way out: to verify A∼B, it suffices to give two injective functions, one from A
to B and the other from B to A, instead of one bijective function from A to B. In many situations, the former is
much easier.

2. Example (A).

Another argument for N∼N
2.

• Define f : N −→ N
2 by f(x) = (x, 0) for any x ∈ N.

f is injective. (Exercise.)

It follows that N.N
2.

• Define g : N2 −→ N by g(x, y) = 2x · 3y for any x, y ∈ N.

g is injective. (Exercise.)

It follows that N2.N.

• Now we have N.N
2 and N

2.N.

According to the Schröder-Bernstein Theorem, N∼N
2.

3. Example (B).

A simple argument for N∼Q.

• We have N ⊂ Q. Then N.Q.

• We have Q.Z2∼N
2∼N. (How comes Q.Z? Fill in the detail.) Then Q.N.

• Now N.Q and Q.N.

According to the Schröder-Bernstein Theorem, N∼Q. We also have N∼Z and Z∼Q.

Remark. Hence there are as many natural numbers as there are integers or rational numbers.

4. Example (C).

Let S, T be subsets of R. Suppose S contains as a subset some interval with two or more points. Suppose T contains

as a subset some interval with two or more points. Then S∼T .

We illustrate the validity of this statement through some simple examples.

(C1) (0, 1)∼[0, 1].

Justification:

• Define f : (0, 1) −→ [0, 1] by f(x) = x for any x ∈ (0, 1).

• Define g : [0, 1] −→ (0, 1) by g(x) =
x+ 1

3
for any x ∈ [0, 1].

• f, g are injective functions. (Exercise.)

Hence (0, 1).[0, 1] and [0, 1].(0, 1).
According to the Schröder-Bernstein Theorem, (0, 1)∼[0, 1].

(C2) [−1, 1]∼R.

Justification:

• Define f : [−1, 1] −→ R by f(x) = x for any x ∈ [−1, 1].
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• Define g : R −→ [−1, 1] by g(x) =
ex − e−x

ex + e−x
for any x ∈ R.

• f, g are injective. (Exercise.)
Hence [−1, 1].R and R.[−1, 1].

According to the Schröder-Bernstein Theorem, [−1, 1]∼R.

With a similar argument we can deduce that I∼J whenever I, J are intervals with at least two points. (Provide the

detail.)

Remarks.

• How to prove [−1, 1] ∪ (2, 3)∼[−2, 0] ∪ [1, 4)?

• How about [1, 2] ∪ Q∼(0.01, 0.09) ∪ (0.1, 0.99) ∪ N?

• How to prove the original statement for the general situation?

5. Example (D).

Recall that Map(N, J0, 9K) is the set of all infinite sequences in J0, 9K.

We argue for [0, 1]∼Map(N, J0, 9K):

• For each r ∈ [0, 1], choose one decimal representation of r and write r = 0.r0r1r2r3 · · · , and then define the

infinite sequence α(r) = (r0, r1, r2, r3, · · · ).

No two distinct real numbers have the same decimal representation.

In this way we have defined the injective function α : [0, 1] −→ Map(N, J0, 9K), given by r 7−→ α(r) for any
r ∈ [0, 1].

Therefore [0, 1].Map(N, J0, 9K).

• Define the function ρ : Map(N, J0, 9K) −→ [0, 1] by

ρ({an}
∞

n=0) = 0.a05a15a25a35 · · · for any {an}
∞

n=0 ∈ Map(N, J0, 9K).

ρ is injective. (Exercise.)

(We can use any one of 1, 2, · · · , 8 in place of 5 in the construction of such an injective function.)

Therefore Map(N, J0, 9K).[0, 1].

• According to the Schröder-Bernstein Theorem, [0, 1]∼Map(N, J0, 9K).

Consequences:

(D1) [0, 1]∼Map(N, J0, 9K)∼(Map(N, J0, 9K))2∼[0, 1]2.

Hence there are as many points in the line segment [0, 1] as there are in the square [0, 1]2.

(D2) R∼[0, 1]∼[0, 1]2∼R2∼C.

There are as many real numbers as there are complex numbers.

(D3) Applying mathematical induction, we have R∼Rn, C∼Cn for any n ∈ N\{0}.

Remarks.

(1) Now it remains to see compare the ‘relative sizes’ of Q and R.

(2) What is the significance of R∼Rn for any n ∈ N\{0}?

It is that we cannot define ‘dimension’ by simply comparing the ‘relative sizes’ of sets. This surprised Cantor
and his contemporaries.

6. Example (E).

Let Λ be the set of all lines in R2. We are going to argue for Λ∼R:

• For each point (a, b) ∈ R2, denote by L(a,b) the line given by the equation y = ax+ b.

(a, b) 7−→ L(a,b) defines an injective function from R2 to Λ.

Hence R∼R2.Λ.

• For each line L in R2, choose one ordered triple (aL, bL, cL) so that L is given by the equation aLx+bLy+cL = 0.

L 7−→ (aL, bL, cL) defines an injective function from Λ to R3.

Hence Λ.R3∼R.

• Now R.Λ and Λ.R. According to the Schröder-Bernstein Theorem, Λ∼R.

Remark. With similar arguments, we deduce that the set of all planes in R3, the set of all circles in R2, the set of

all spheres in R3 et cetera are of cardinality equal to R.
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7. Preparation for a proof of the Schöder-Bernstein Theorem.

Recall:

(a) Definition. (Generalized union and generalized intersection.)

Let M be a set, and {Sn}
∞

n=0 be an infinite sequence of subsets of the set M .

i. The (generalized) intersection of the infinite sequence of subsets {Sn}
∞

n=0 of the set M is defined

to be the set {x ∈ M : x ∈ Sn for any n ∈ N}. It is denoted by
∞

∩
n=0

Sn.

ii. The (generalized) union of the infinite sequence of subsets {Sn}
∞

n=0 of the set M is defined to be

the set {x ∈ M : x ∈ Sn for some n ∈ N}. It is denoted by
∞

∪
n=0

Sn.

(b) Theorem (IV). (‘Glueing Lemma’.)

Let A,B be sets. Let {Cn}
∞

n=0, {Dn}
∞

n=0 be infinite sequences of subsets of A,B respectively. Let {Hn}
∞

n=0 be

an infinite seuqence of subsets of A×B. Suppose {(Cn, Dn, Hn)}
∞

n=0 is an infinite sequence of bijective functions.

Suppose that for any j, k ∈ N, if j 6= k then Cj ∩ Ck = ∅ and Dj ∩Dk = ∅. Then
(

∞

∪
n=0

Cn,
∞

∪
n=0

Dn,
∞

∪
n=0

Hn

)

is a

bijective function.

We are going to outline an argument for the Schröder-Bernstein Theorem. The argument will rely on Theorem (IV).

The detail in the argument for Theorem (XI) and the proof of the Theorem (IV) are left as exercises.

8. Outline of an argument for the Schröder-Bernstein Theorem.

Let A,B be sets. Suppose A.B and B.A.

Since A.B, there is some injective function from A to B, say, f : A −→ B with graph F .

Since B.A, there is some injective function from B to A, say, g : B −→ A with graph G.

When one of f, g is surjective as well, it will be a bijective function as well. Then we will have A∼B immediately.

From now on, we assume that neither of f, g is surjective.

We are going to construct a bijective function from A to B out of f, g.

[Idea. Make use of the non-empty sets B\f(A), A\g(B) and the injective functions f, g to ‘break up’ A,B respectively
into many many pieces. ‘Arrange’ the ‘pieces’ ‘on the two sides’ into many many pairs appropriately, with one bijective
function defined by f or g as appropriate ‘joining’ as its domain and range the two ‘pieces’ in each pair. ‘Glue up’
the many many bijective functions together to obtain a bijective function from A to B.]

(a) Define A0 = A, B0 = B. For any n ∈ N, define

A2n+1 = f(A2n), A2n+2 = g(A2n+1),
B2n+1 = g(B2n), B2n+2 = f(B2n+1).

(So

A1 = f(A0), A2 = g(A1) = g(f(A0)), A3 = f(A2) = f(g(f(A0))), A4 = g(A3) = g(f(g(f(A0)))),

and so forth and so on:

A B

A0
A1

f

g

A B

A1
A2

f

g

A B

A2
A3

f

g
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Also,

B1 = g(B0), B2 = f(B1) = f(g(B0)), B3 = g(B2) = g(f(g(B0))), B4 = f(B3) = f(g(f(g(B0)))),

and so forth and so on:

A B

B0
B1

f

g

A B

B1
B2

f

g

A B

B1
B2

f

g

Note that the pictures highlight the injectivity and non-surjectivity of each of f, g.)

(b) We apply mathematical induction to verify the two ‘chains of proper subset relations’ below:

(1) A = A0 % B1 % A2 % B3 % · · · % A2n % B2n+1 % A2n+2 % B2n+3 % · · · .

(2) B = B0 % A1 % B2 % A3 % · · · % B2n % A2n+1 % B2n+2 % A2n+3 % · · · .

(Below is what we see when we consider the An’s and the Bm’s separately:

A0 % A2 % A4 % · · · % A2n % · · · .
B0 % A1 % A3 % · · · % A2n+1 % · · · .

A

...

...

B

...

...

f

g

A0 % B1 % B3 % · · · % B2n+1 % · · · .
B0 % B2 % B4 % · · · % B2n % · · · .

A

...

...

B

...

...

f

g

They combine to give the two ‘chains of proper subset relations’ described in (1), (2):

A

...

...

B

...

...

f

g
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It is the injectivity and non-surjectivity of f and g that guarantees each ‘proper subset relation’ in each ‘chain’.)

(c) For any n ∈ N, define

C2n+1 = A2n\B2n+1, C2n+2 = B2n+1\A2n+2,
D2n+1 = B2n\A2n+1, D2n+2 = A2n+1\B2n+2.

Define C0 =
∞

∩
n=0

A2n, D0 =
∞

∩
n=0

B2n.

We verify the four statements below:

(3) For any n ∈ N, Cn 6= ∅ and Dn 6= ∅.

(4) For any m,n ∈ N, if m 6= n then Cm ∩ Cn = ∅ and Dm ∩Dn = ∅.

(5) C0 =
∞

∩
n=0

B2n+1 and D0 =
∞

∩
n=0

A2n+1

(6) A =
∞

∪
n=0

Cn, and B =
∞

∪
n=0

Dn.

(So f, g combine together to ‘split’ the sets A,B into the ‘chambers’ C0, C1, C2, C3, · · · and D0, D1, D2, D3, · · ·
respectively:

A

C0

C1

C2

C3

C4

...

C2n+1

C2n+2

C2n+3

C2n+4

...

B

D0

D1

D2

D3

D4

...

D2n+1

D2n+2

D2n+3

D2n+4

...

f

g

f0

f1 g1

f2 g2

fn+1 gn+1

fn+2 gn+2

It will turn out that C0∼D0, and C1∼D2, C2∼D1, C3∼D4, C4∼D3, ..., C2n+1∼D2n+2, C2n+2∼D2n+1, ...,
because of the injectivity of f, g.)

(d) Define the relation f0 by f0 = (C0, D0, F ∩ (C0 ×D0)).

For any n ∈ N, define the relation fn+1 by fn = (C2n+1, D2n+2, F ∩ (C2n+1 ×D2n+2)).

For any m ∈ N, define the relation gm+1 by gm+1 = (D2m+1, C2m+2, G ∩ (D2m+1 × C2m+2)).

We verify the three statements below:

(7) f0 is a bijective function.

(8) For any n ∈ N, fn+1 is a bijective function.

(9) For any m ∈ N, gm+1 is a bijective function.

(In fact, f0(x) = f(x) for any x ∈ C0. For any n ∈ N, we have fn(x) = f(x) for any x ∈ C2n+1. For any m ∈ N,
we have gm(y) = g(y) for any y ∈ D2m+1.)

(e) Define the function h : A −→ B by

h(x) =

{

f0(x) if x ∈ C0
fn(x) if x ∈ C2n−1 for some n ∈ N\{0}
gm

−1(x) if x ∈ C2m for some m ∈ N\{0}

We verify that h is a bijective function. (Make use of the Generalized Glueing Lemma.)

It follows that A∼B.
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