1. Theorem (XI). (Schröder-Bernstein Theorem.)

Let A, B be sets. Suppose $A \leq B$ and $B \leq A$. Then $A \sim B$.

We postpone the proof of the Schröder-Bernstein Theorem. For the moment, we take for granted the validity of this result and see its applications in various examples.

Remark.

What is so special about Schröder-Bernstein Theorem?

Recall the definition for the notion of equal cardinality:

 $A \sim B$ iff there is a bijective function from A to B.

Imagine we want to verify that two given sets, say, A, B, are of equal cardinality. If we adhere to definition, we have to write down a relation, say, h, from A to B and verify that h is a bijective function. It is very often no easy task, even when A, B are not very complicated sets. (Recall how we verify $[0,1]\sim[0,1)$ by constructing a bijective function from [0,1] to [0,1), in the Handout Sets of equal cardinality. The difficulty in this specific example arises from the fact that we are not used to thinking of functions which do not look 'nice': in this case a function is not continuous at many points is involved. But this is the price for ensuring that what we write down is a bijective function.) The Schröder-Bernstein Theorem offers a way out: to verify $A\sim B$, it suffices to give two injective functions, one from Ato B and the other from B to A, instead of one bijective function from A to B. In many situations, the former is much easier.

2. Example (A).

Another argument for $\mathbb{N} \sim \mathbb{N}^2$.

- Define f: N → N² by f(x) = (x,0) for any x ∈ N.
 f is injective. (Exercise.)
 It follows that N≲N².
- Define g: N² → N by g(x, y) = 2^x ⋅ 3^y for any x, y ∈ N. g is injective. (Exercise.)
 It follows that N²≲N.
- Now we have $N \lesssim N^2$ and $N^2 \lesssim N$. According to the Schröder-Bernstein Theorem, $N \sim N^2$.

3. Example (B).

A simple argument for $\mathbb{N} \sim \mathbb{Q}$.

- We have $\mathbb{N} \subset \mathbb{Q}$. Then $\mathbb{N} \leq \mathbb{Q}$.
- We have $\mathbb{Q} \leq \mathbb{Z}^2 \sim \mathbb{N}^2 \sim \mathbb{N}$. (How comes $\mathbb{Q} \leq \mathbb{Z}$? Fill in the detail.) Then $\mathbb{Q} \leq \mathbb{N}$.
- Now $N \leq \mathbb{Q}$ and $\mathbb{Q} \leq \mathbb{N}$. According to the Schröder-Bernstein Theorem, $N \sim \mathbb{Q}$. We also have $N \sim \mathbb{Z}$ and $\mathbb{Z} \sim \mathbb{Q}$.

Remark. Hence there are as many natural numbers as there are integers or rational numbers.

4. Example (C).

Let S, T be subsets of \mathbb{R} . Suppose S contains as a subset some interval with two or more points. Suppose T contains as a subset some interval with two or more points. Then $S \sim T$.

We illustrate the validity of this statement through some simple examples.

(C1) $(0,1) \sim [0,1].$

Justification:

• Define $f: (0,1) \longrightarrow [0,1]$ by f(x) = x for any $x \in (0,1)$.

• Define
$$g: [0,1] \longrightarrow (0,1)$$
 by $g(x) = \frac{x+1}{3}$ for any $x \in [0,1]$.

• f, g are injective functions. (Exercise.) Hence $(0, 1) \leq [0, 1]$ and $[0, 1] \leq (0, 1)$. According to the Schröder-Bernstein Theorem, $(0, 1) \sim [0, 1]$.

(C2) $[-1,1] \sim \mathbb{R}.$

Justification:

• Define $f: [-1,1] \longrightarrow \mathbb{R}$ by f(x) = x for any $x \in [-1,1]$.

- Define $g: \mathbb{R} \longrightarrow [-1,1]$ by $g(x) = \frac{e^x e^{-x}}{e^x + e^{-x}}$ for any $x \in \mathbb{R}$.
- f, g are injective. (Exercise.) Hence $[-1, 1] \leq \mathbb{R}$ and $\mathbb{R} \leq [-1, 1]$. According to the Schröder-Bernstein Theorem, $[-1, 1] \sim \mathbb{R}$.

With a similar argument we can deduce that $I \sim J$ whenever I, J are intervals with at least two points. (Provide the detail.)

Remarks.

- How to prove $[-1,1] \cup (2,3) \sim [-2,0] \cup [1,4)$?
- How about $[1,2] \cup \mathbb{Q} \sim (0.01, 0.09) \cup (0.1, 0.99) \cup \mathbb{N}$?
- How to prove the original statement for the general situation?

5. Example (D).

Recall that Map(N, [0, 9]) is the set of all infinite sequences in [0, 9].

We argue for $[0,1] \sim \mathsf{Map}(\mathsf{N}, \llbracket 0,9 \rrbracket)$:

- For each $r \in [0,1]$, choose one decimal representation of r and write $r = 0.r_0r_1r_2r_3\cdots$, and then define the infinite sequence $\alpha(r) = (r_0, r_1, r_2, r_3, \cdots)$.
 - No two distinct real numbers have the same decimal representation.

In this way we have defined the injective function $\alpha : [0,1] \longrightarrow \mathsf{Map}(\mathsf{N}, \llbracket 0,9 \rrbracket)$, given by $r \longmapsto \alpha(r)$ for any $r \in [0,1]$.

Therefore $[0,1] \lesssim Map(\mathbb{N}, \llbracket 0,9 \rrbracket)$.

• Define the function $\rho : \mathsf{Map}(\mathsf{N}, \llbracket 0, 9 \rrbracket) \longrightarrow [0, 1]$ by

$$\rho(\{a_n\}_{n=0}^{\infty}) = 0.a_0 5a_1 5a_2 5a_3 5\cdots$$
 for any $\{a_n\}_{n=0}^{\infty} \in \mathsf{Map}(\mathsf{N}, \llbracket 0, 9 \rrbracket).$

 ρ is injective. (Exercise.)

(We can use any one of $1, 2, \dots, 8$ in place of 5 in the construction of such an injective function.) Therefore $Map(\mathbb{N}, [\![0,9]\!]) \leq [0,1]$.

• According to the Schröder-Bernstein Theorem, $[0, 1] \sim \mathsf{Map}(\mathsf{N}, \llbracket 0, 9 \rrbracket)$.

Consequences:

 $(D1) \ [0,1] \sim \mathsf{Map}(\mathsf{N},\llbracket 0,9 \rrbracket) \sim (\mathsf{Map}(\mathsf{N},\llbracket 0,9 \rrbracket))^2 \sim [0,1]^2.$

Hence there are as many points in the line segment [0,1] as there are in the square $[0,1]^2$.

(D2) $\mathbb{R} \sim [0,1] \sim [0,1]^2 \sim \mathbb{R}^2 \sim \mathbb{C}$.

There are as many real numbers as there are complex numbers.

(D3) Applying mathematical induction, we have $\mathbb{R} \sim \mathbb{R}^n$, $\mathbb{C} \sim \mathbb{C}^n$ for any $n \in \mathbb{N} \setminus \{0\}$.

Remarks.

- (1) Now it remains to see compare the 'relative sizes' of \mathbb{Q} and \mathbb{R} .
- (2) What is the significance of $\mathbb{R} \sim \mathbb{R}^n$ for any $n \in \mathbb{N} \setminus \{0\}$? It is that we cannot define 'dimension' by simply comparing the 'relative sizes' of sets. This surprised Cantor and his contemporaries.

6. Example (E).

Let Λ be the set of all lines in \mathbb{R}^2 . We are going to argue for $\Lambda \sim \mathbb{R}$:

- For each point $(a, b) \in \mathbb{R}^2$, denote by $L_{(a,b)}$ the line given by the equation y = ax + b. $(a, b) \longmapsto L_{(a,b)}$ defines an injective function from \mathbb{R}^2 to Λ . Hence $\mathbb{R} \sim \mathbb{R}^2 \lesssim \Lambda$.
- For each line L in \mathbb{R}^2 , choose one ordered triple (a_L, b_L, c_L) so that L is given by the equation $a_L x + b_L y + c_L = 0$. $L \longmapsto (a_L, b_L, c_L)$ defines an injective function from Λ to \mathbb{R}^3 . Hence $\Lambda \leq \mathbb{R}^3 \sim \mathbb{R}$.
- Now $\mathbb{R} \lesssim \Lambda$ and $\Lambda \lesssim \mathbb{R}$. According to the Schröder-Bernstein Theorem, $\Lambda \sim \mathbb{R}$.

Remark. With similar arguments, we deduce that the set of all planes in \mathbb{R}^3 , the set of all circles in \mathbb{R}^2 , the set of all spheres in \mathbb{R}^3 et cetera are of cardinality equal to \mathbb{R} .

7. Preparation for a proof of the Schöder-Bernstein Theorem.

Recall:

(a) Definition. (Generalized union and generalized intersection.)

Let M be a set, and $\{S_n\}_{n=0}^{\infty}$ be an infinite sequence of subsets of the set M.

- i. The (generalized) intersection of the infinite sequence of subsets $\{S_n\}_{n=0}^{\infty}$ of the set M is defined to be the set $\{x \in M : x \in S_n \text{ for any } n \in \mathbb{N}\}$. It is denoted by $\bigcap_{n=0}^{\infty} S_n$.
- ii. The (generalized) union of the infinite sequence of subsets $\{S_n\}_{n=0}^{\infty}$ of the set M is defined to be the set $\{x \in M : x \in S_n \text{ for some } n \in \mathbb{N}\}$. It is denoted by $\bigcup_{n=0}^{\infty} S_n$.

(b) Theorem (IV). ('Glueing Lemma'.)

Let A, B be sets. Let $\{C_n\}_{n=0}^{\infty}$, $\{D_n\}_{n=0}^{\infty}$ be infinite sequences of subsets of A, B respectively. Let $\{H_n\}_{n=0}^{\infty}$ be an infinite sequence of subsets of $A \times B$. Suppose $\{(C_n, D_n, H_n)\}_{n=0}^{\infty}$ is an infinite sequence of bijective functions. Suppose that for any $j, k \in \mathbb{N}$, if $j \neq k$ then $C_j \cap C_k = \emptyset$ and $D_j \cap D_k = \emptyset$. Then $\left(\bigcup_{n=0}^{\infty} C_n, \bigcup_{n=0}^{\infty} D_n, \bigcup_{n=0}^{\infty} H_n\right)$ is a bijective function.

We are going to outline an argument for the Schröder-Bernstein Theorem. The argument will rely on Theorem (IV). The detail in the argument for Theorem (XI) and the proof of the Theorem (IV) are left as exercises.

8. Outline of an argument for the Schröder-Bernstein Theorem.

Let A, B be sets. Suppose $A \leq B$ and $B \leq A$.

Since $A \leq B$, there is some injective function from A to B, say, $f: A \longrightarrow B$ with graph F.

Since $B \leq A$, there is some injective function from B to A, say, $g: B \longrightarrow A$ with graph G.

When one of f, g is surjective as well, it will be a bijective function as well. Then we will have $A \sim B$ immediately.

From now on, we assume that neither of f, g is surjective.

We are going to construct a bijective function from A to B out of f, g.

[*Idea.* Make use of the non-empty sets $B \setminus f(A)$, $A \setminus g(B)$ and the injective functions f, g to 'break up' A, B respectively into many many pieces. 'Arrange' the 'pieces' 'on the two sides' into many many pairs appropriately, with one bijective function defined by f or g as appropriate 'joining' as its domain and range the two 'pieces' in each pair. 'Glue up' the many many bijective functions together to obtain a bijective function from A to B.]

(a) Define $A_0 = A$, $B_0 = B$. For any $n \in \mathbb{N}$, define

$$\begin{array}{rcl} A_{2n+1} &=& f(A_{2n}), \\ B_{2n+1} &=& g(B_{2n}), \end{array} \qquad \qquad \begin{array}{rcl} A_{2n+2} &=& g(A_{2n+1}), \\ B_{2n+2} &=& f(B_{2n+1}). \end{array}$$

(So

$$A_1 = f(A_0), \quad A_2 = g(A_1) = g(f(A_0)), \quad A_3 = f(A_2) = f(g(f(A_0))), \quad A_4 = g(A_3) = g(f(g(f(A_0)))), \quad A_4 = g(A_3) = g(f(g(f(A_0))))), \quad A_4 = g(A_3) = g(f(g(f(A_0)))), \quad A_4 = g(A_3) = g(A_3)$$

and so forth and so on:

Also,

 $B_1 = g(B_0), \quad B_2 = f(B_1) = f(g(B_0)), \quad B_3 = g(B_2) = g(f(g(B_0))), \quad B_4 = f(B_3) = f(g(f(g(B_0)))),$

and so forth and so on:

Note that the pictures highlight the injectivity and non-surjectivity of each of f, g.)

(b) We apply mathematical induction to verify the two 'chains of proper subset relations' below:

(1)
$$A = A_0 \supseteq B_1 \supseteq A_2 \supseteq B_3 \supseteq \cdots \supseteq A_{2n} \supseteq B_{2n+1} \supseteq A_{2n+2} \supseteq B_{2n+3} \supseteq \cdots$$

(2) $B = B_0 \supseteq A_1 \supseteq B_2 \supseteq A_3 \supseteq \cdots \supseteq B_{2n} \supseteq A_{2n+1} \supseteq B_{2n+2} \supseteq A_{2n+3} \supseteq \cdots$

(Below is what we see when we consider the A_n 's and the B_m 's separately:

They combine to give the two 'chains of proper subset relations' described in (1), (2):

It is the injectivity and non-surjectivity of f and g that guarantees each 'proper subset relation' in each 'chain'.) (c) For any $n \in \mathbb{N}$, define

Define $C_0 = \bigcap_{n=0}^{\infty} A_{2n}, D_0 = \bigcap_{n=0}^{\infty} B_{2n}.$ We verify the four statements below:

- (3) For any $n \in \mathbb{N}$, $C_n \neq \emptyset$ and $D_n \neq \emptyset$.
- (4) For any $m, n \in \mathbb{N}$, if $m \neq n$ then $C_m \cap C_n = \emptyset$ and $D_m \cap D_n = \emptyset$.
- (5) $C_0 = \bigcap_{n=0}^{\infty} B_{2n+1}$ and $D_0 = \bigcap_{n=0}^{\infty} A_{2n+1}$ (6) $A = \bigcup_{n=0}^{\infty} C_n$, and $B = \bigcup_{n=0}^{\infty} D_n$.

(So f, g combine together to 'split' the sets A, B into the 'chambers' $C_0, C_1, C_2, C_3, \cdots$ and $D_0, D_1, D_2, D_3, \cdots$ respectively:

It will turn out that $C_0 \sim D_0$, and $C_1 \sim D_2$, $C_2 \sim D_1$, $C_3 \sim D_4$, $C_4 \sim D_3$, ..., $C_{2n+1} \sim D_{2n+2}$, $C_{2n+2} \sim D_{2n+1}$, ..., because of the injectivity of f, g.)

(d) Define the relation f_0 by $f_0 = (C_0, D_0, F \cap (C_0 \times D_0))$.

For any $n \in \mathbb{N}$, define the relation f_{n+1} by $f_n = (C_{2n+1}, D_{2n+2}, F \cap (C_{2n+1} \times D_{2n+2}))$.

For any $m \in \mathbb{N}$, define the relation g_{m+1} by $g_{m+1} = (D_{2m+1}, C_{2m+2}, G \cap (D_{2m+1} \times C_{2m+2})).$

We verify the three statements below:

- (7) f_0 is a bijective function.
- (8) For any $n \in \mathbb{N}$, f_{n+1} is a bijective function.
- (9) For any $m \in \mathbb{N}$, g_{m+1} is a bijective function.

(In fact, $f_0(x) = f(x)$ for any $x \in C_0$. For any $n \in \mathbb{N}$, we have $f_n(x) = f(x)$ for any $x \in C_{2n+1}$. For any $m \in \mathbb{N}$, we have $g_m(y) = g(y)$ for any $y \in D_{2m+1}$.)

(e) Define the function $h: A \longrightarrow B$ by

$$h(x) = \begin{cases} f_0(x) & \text{if} & x \in C_0\\ f_n(x) & \text{if} & x \in C_{2n-1} \text{ for some } n \in \mathbb{N} \setminus \{0\}\\ g_m^{-1}(x) & \text{if} & x \in C_{2m} \text{ for some } m \in \mathbb{N} \setminus \{0\} \end{cases}$$

We verify that h is a bijective function. (Make use of the Generalized Glueing Lemma.) It follows that $A \sim B$.