1. Theorem (XI). (Schröder-Bernstein Theorem.)

Let A, B be sets. Suppose $A \lesssim B$ and $B \lesssim A$. Then $A \sim B$.

Remark.

What is so special about Schröder-Bernstein Theorem?

• It is usually much more difficult to write down a bijective function than to write down a pair of injective functions. So?

2. Example (A).

Another argument for $\mathbb{N} \sim \mathbb{N}^2$.

- Define $f: \mathbb{N} \longrightarrow \mathbb{N}^2$ by f(x) = (x, 0) for any $x \in \mathbb{N}$. f is injective. (Exercise.) It follows that $\mathbb{N} \lesssim \mathbb{N}^2$.
- Define $g: \mathbb{N}^2 \longrightarrow \mathbb{N}$ by $g(x,y) = 2^x \cdot 3^y$ for any $x,y \in \mathbb{N}$. g is injective. (Exercise.) It follows that $\mathbb{N}^2 \lesssim \mathbb{N}$.
- Now we have $\mathbb{N} \lesssim \mathbb{N}^2$ and $\mathbb{N}^2 \lesssim \mathbb{N}$. According to the Schröder-Bernstein Theorem, $\mathbb{N} \sim \mathbb{N}^2$.

3. Example (B).

A simple argument for $\mathbb{N} \sim \mathbb{Q}$.

- We have $\mathbb{N} \subset \mathbb{Q}$. Then $\mathbb{N} \lesssim \mathbb{Q}$.
- We have $\mathbb{Q} \lesssim \mathbb{Z}^2 \sim \mathbb{N}^2 \sim \mathbb{N}$. (Detail for $\mathbb{Q} \lesssim \mathbb{Z}^2$?) Then $\mathbb{Q} \lesssim \mathbb{N}$.
- Now $\mathbb{N} \lesssim \mathbb{Q}$ and $\mathbb{Q} \lesssim \mathbb{N}$. According to the Schröder-Bernstein Theorem, $\mathbb{N} \sim \mathbb{Q}$. We also have $\mathbb{N} \sim \mathbb{Z}$ and $\mathbb{Z} \sim \mathbb{Q}$.

Remark.

Hence there are as many natural numbers as there are integers or rational numbers.

4. Example (C).

Let S, T be subsets of \mathbb{R} .

Suppose S contains as a subset some interval with two or more points. Suppose T contains as a subset some interval with two or more points. Then $S \sim T$.

Illustrations through some simple examples.

(C1) $(0,1) \sim [0,1]$.

Justification:

- Define $f:(0,1) \longrightarrow [0,1]$ by f(x)=x for any $x \in (0,1)$.
- Define $g:[0,1] \longrightarrow (0,1)$ by $g(x) = \frac{x+1}{3}$ for any $x \in [0,1]$.
- f, g are injective functions. (Exercise.) Hence $(0, 1) \lesssim [0, 1]$ and $[0, 1] \lesssim (0, 1)$. According to the Schröder-Bernstein Theorem, $(0, 1) \sim [0, 1]$.

Example (C).

Let S, T be subsets of \mathbb{R} .

Suppose S contains as a subset some interval with two or more points. Suppose T contains as a subset some interval with two or more points. Then $S \sim T$.

Illustrations through some simple examples.

(C1)
$$(0,1) \sim [0,1]$$
.

(C2)
$$[-1,1] \sim \mathbb{R}$$
.

Justification:

- Define $f: [-1,1] \longrightarrow \mathbb{R}$ by f(x) = x for any $x \in [-1,1]$.
- Define $g: \mathbb{R} \longrightarrow [-1, 1]$ by $g(x) = \frac{e^x e^{-x}}{e^x + e^{-x}}$ for any $x \in \mathbb{R}$.
- f, g are injective. (Exercise.) Hence $[-1, 1] \lesssim \mathbb{R}$ and $\mathbb{R} \lesssim [-1, 1]$. According to the Schröder-Bernstein Theorem, $[-1, 1] \sim \mathbb{R}$.

Example (C).

Let S, T be subsets of \mathbb{R} . Suppose S contains as a subset some interval with two or more points. Suppose T contains as a subset some interval with two or more points. Then $S \sim T$.

Illustrations through some simple examples.

(C1)
$$(0,1) \sim [0,1]$$
.

(C2)
$$[-1,1] \sim IR$$
.

With a similar argument we can deduce that $I \sim J$ whenever I, J are intervals with at least two points. (Provide the detail.)

Remarks.

- How to prove $[-1,1] \cup (2,3) \sim [-2,0] \cup [1,4)$?
- How about $[1,2] \cup \mathbb{Q} \sim (0.01, 0.09) \cup (0.1, 0.99) \cup \mathbb{N}$?
- How to prove the statement for the general situation?

5. Example (D).

Recall that $\mathsf{Map}(\mathbb{N}, \llbracket 0, 9 \rrbracket)$ is the set of all infinite sequences in $\llbracket 0, 9 \rrbracket$. We argue for $[0, 1] \sim \mathsf{Map}(\mathbb{N}, \llbracket 0, 9 \rrbracket)$:

• For each $r \in [0, 1]$, choose one decimal representation of r and write

$$r=0.r_0r_1r_2r_3\cdots,$$

and then define the infinite sequence

$$\alpha(r)=(r_0,r_1,r_2,r_3,\cdots).$$

No two distinct real numbers have the same decimal representation. In this way we have defined the injective function

$$\alpha: [0,1] \longrightarrow \mathsf{Map}(\mathbb{N}, \llbracket 0,9 \rrbracket),$$

given by

$$r \longmapsto \alpha(r)$$
 for any $r \in [0, 1]$.

Therefore $[0, 1] \lesssim Map(N, [0, 9])$.

Example (D).

Recall that $\mathsf{Map}(\mathbb{N}, \llbracket 0, 9 \rrbracket)$ is the set of all infinite sequences in $\llbracket 0, 9 \rrbracket$. We argue for $\llbracket 0, 1 \rrbracket \sim \mathsf{Map}(\mathbb{N}, \llbracket 0, 9 \rrbracket)$:

- ... Therefore $[0,1] \lesssim \mathsf{Map}(\mathbb{N}, \llbracket 0,9 \rrbracket)$.
- Define the function

$$\rho: \mathsf{Map}(\mathbb{N}, \llbracket 0, 9 \rrbracket) \longrightarrow [0, 1]$$

by

$$\rho(\{a_n\}_{n=0}^{\infty}) = 0.a_0 5a_1 5a_2 5a_3 5 \cdots$$
 for any $\{a_n\}_{n=0}^{\infty} \in \mathsf{Map}(\mathbb{N}, [0, 9]).$

 ρ is injective. (Exercise.)

(We can use any one of $1, 2, \dots, 8$ in place of 5 in the construction of such an injective function.)

Therefore $Map(N, [0, 9]) \lesssim [0, 1]$.

• According to the Schröder-Bernstein Theorem, $[0,1] \sim \mathsf{Map}(\mathbb{N}, [0,9])$.

Example (D).

Recall that Map(N, [0, 9]) is the set of all infinite sequences in [0, 9].

We argue for $[0,1] \sim \mathsf{Map}(\mathbb{N}, \llbracket 0,9 \rrbracket) : \cdots$

Consequences of $[0, 1] \sim \mathsf{Map}(\mathbb{N}, [0, 9])$:

- (D1) $[0,1]\sim \mathsf{Map}(\mathbb{N}, \llbracket 0,9 \rrbracket) \sim (\mathsf{Map}(\mathbb{N}, \llbracket 0,9 \rrbracket))^2 \sim [0,1]^2$. Hence there are as many points in the line segment [0,1] as there are in the square $[0,1]^2$.
- (D2) $\mathbb{R} \sim [0, 1] \sim [0, 1]^2 \sim \mathbb{R}^2 \sim \mathbb{C}$. There are as many real numbers as there are complex numbers.
- (D3) Applying mathematical induction, we have $\mathbb{R} \sim \mathbb{R}^n$, $\mathbb{C} \sim \mathbb{C}^n$ for any $n \in \mathbb{N} \setminus \{0\}$.

Remarks.

- (1) Now it remains to see compare the 'relative sizes' of \mathbb{Q} and \mathbb{R} .
- (2) What is the significance of $\mathbb{R} \sim \mathbb{R}^n$ for any $n \in \mathbb{N} \setminus \{0\}$? It is that we cannot define 'dimension' by simply comparing the 'relative sizes' of sets. This surprised Cantor and his contemporaries.

6. Example (E).

Let Λ be the set of all lines in \mathbb{R}^2 . We are going to argue for $\Lambda \sim \mathbb{R}$:

- For each point $(a, b) \in \mathbb{R}^2$, denote by $L_{(a,b)}$ the line given by the equation y = ax + b. $(a, b) \longmapsto L_{(a,b)}$ defines an injective function from \mathbb{R}^2 to Λ . Hence $\mathbb{R} \sim \mathbb{R}^2 \lesssim \Lambda$.
- For each line L in \mathbb{R}^2 , choose one ordered triple (a_L, b_L, c_L) so that L is given by the equation $a_L x + b_L y + c_L = 0$.

 $L \longmapsto (a_L, b_L, c_L)$ defines an injective function from Λ to \mathbb{R}^3 .

Hence $\Lambda \lesssim \mathbb{R}^3 \sim \mathbb{R}$.

• Now $\mathbb{R} \lesssim \Lambda$ and $\Lambda \lesssim \mathbb{R}$.

According to the Schröder-Bernstein Theorem, $\Lambda \sim \mathbb{R}$.

Remark.

With similar arguments, we deduce that the set of all planes in \mathbb{R}^3 , the set of all circles in \mathbb{R}^2 , the set of all spheres in \mathbb{R}^3 et cetera are of cardinality equal to \mathbb{R} .

- 7. Preparation for a proof of the Schöder-Bernstein Theorem.
 Recall:
 - (a) Definition. (Generalized union and generalized intersection.) Let M be a set, and $\{S_n\}_{n=0}^{\infty}$ be an infinite sequence of subsets of the set M.
 - i. The (generalized) intersection of the infinite sequence of subsets $\{S_n\}_{n=0}^{\infty}$ of the set M is defined to be the set $\{x \in M : x \in S_n \text{ for any } n \in \mathbb{N}\}$. It is denoted by $\bigcap_{n=0}^{\infty} S_n$.
 - ii. The (generalized) union of the infinite sequence of subsets $\{S_n\}_{n=0}^{\infty}$ of the set M is defined to be the set $\{x \in M : x \in S_n \text{ for some } n \in \mathbb{N}\}$. It is denoted by $\bigcup_{n=0}^{\infty} S_n$.
 - (b) Theorem (IV). ('Glueing Lemma'.)

Let A, B be sets. Let $\{C_n\}_{n=0}^{\infty}$, $\{D_n\}_{n=0}^{\infty}$ be infinite sequences of subsets of A, B respectively. Let $\{H_n\}_{n=0}^{\infty}$ be an infinite sequence of subsets of $A \times B$. Suppose $\{(C_n, D_n, H_n)\}_{n=0}^{\infty}$ is an infinite sequence of bijective functions. Suppose that for any $j, k \in \mathbb{N}$, if $j \neq k$ then $C_j \cap C_k = \emptyset$ and $D_j \cap D_k = \emptyset$. Then $\left(\bigcup_{n=0}^{\infty} C_n, \bigcup_{n=0}^{\infty} D_n, \bigcup_{n=0}^{\infty} H_n\right)$ is a bijective function.

8. Outline of an argument for the Schröder-Bernstein Theorem.

Let A, B be sets. Suppose $A \lesssim B$ and $B \lesssim A$.

Since $A \lesssim B$, there is some injective function from A to B, say, $f: A \longrightarrow B$ with graph F.

Since $B \lesssim A$, there is some injective function from B to A, say, $g: B \longrightarrow A$ with graph G.

When one of f, g is surjective as well, it will be a bijective function as well. Then we will have $A \sim B$ immediately.

From now on, we assume that neither of f, g is surjective.

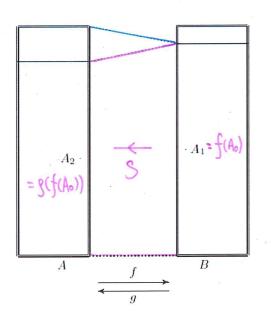
We are going to construct a bijective function from A to B out of f, g.

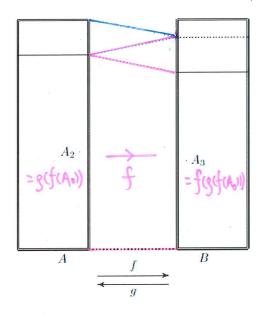
[Idea. Make use of the non-empty sets $B \setminus f(A)$, $A \setminus g(B)$ and the injective functions f, g to 'break up' A, B respectively into many many pieces.

'Arrange' the 'pieces' 'on the two sides' into many many pairs appropriately, with one bijective function defined by f or g as appropriate 'joining' as its domain and range the two 'pieces' in each pair.

'Glue up' the many many bijective functions together to obtain a bijective function from A to B.]

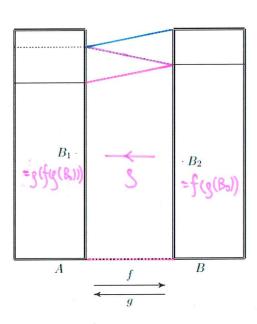
 $A = A_0$ $A_1 = f(A_0)$ $A_1 = f(A_0)$ B B

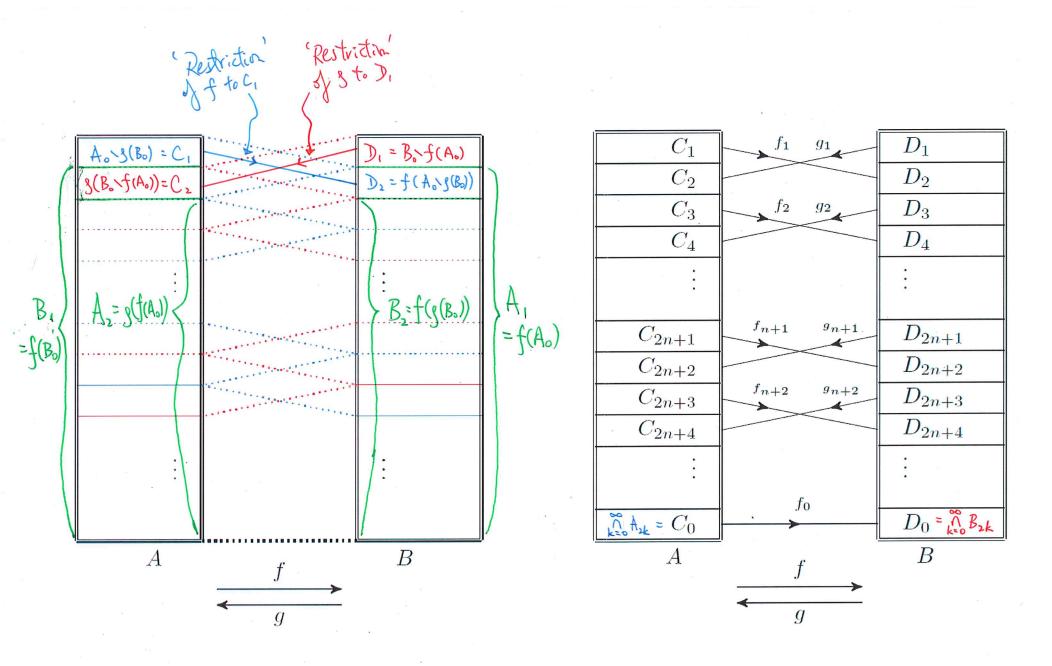




 $S(B_0) = B_1$ $S(B_0) = B_1$







C, ~Dz 'due to f'
D, ~Cz 'due to g'