
MATH1050 More on vector spaces and linear transformations

0. (a) The handout is a continuation of the Handouts Linear algebra beyond systems of linear equations and
manipulation of matrices, Spanning sets, linearly independent sets, and bases.

(b) The justification for the theoretical results and the claims in the concrete examples are left as exercises in
the use of sets, functions and equivalence relations in set language.

1. Theorem (1).
Let V,W be vector spaces over a field F, and φ : V −→W be a linear transformation over F.
The statements below hold:

(a) Suppose U is a subspace of V over F. Then φ(U) is a subspace of W over F.

(b) Let U1, U2 be subspaces of V over F. Suppose U1 is a subspace of U2 over F. Then φ(U1) is a subspace of
φ(U2) over F.

(c) Suppose U1, U2 are subspaces of V over F. Then φ(U1 + U2) = φ(U1) + φ(U2) as vector spaces over F.

(d) Suppose U1, U2 are subspaces of V over F. Then φ(U1 ∩ U2) is a subspace of φ(U1) ∩ φ(U2) over F.

2. Theorem (2).
Let V,W be vector spaces over a field F, and φ : V −→W be a linear transformation over F.
The statements below hold:

(a) Suppose U is a subspace of W over F. Then φ−1(U) is a subspace of V over F.

(b) Let U1, U2 be subspaces of W over F. Suppose U1 is a subspace of U2 over F. Then φ−1(U1) is a subspace of
φ−1(U2) over F.

(c) Suppose U1, U2 are subspaces of W over F. Then φ−1(U1+U2)=φ
−1(U1)+φ

−1(U2) as vector spaces over F.

(d) Suppose U1, U2 are subspaces of W over F. Then φ−1(U1∩U2) = φ−1(U1)∩φ−1(U2) as vector spaces over F.

3. Definition.
Let V,W be vector spaces over a field F, and φ : V −→W be a linear transformation over F.

The subspace φ−1({0}) of V is called the kernel of the linear transformation φ. It is denoted by N (φ).
Remark on terminology. The kernel of T is also called the null space of φ.

4. Examples on null spaces.
Refer to the Handout Linear algebra beyond systems of linear equations and manipulation of matrices . Given
that V,W are vector spaces over a field F, and φ : V −→W is a linear transformation over F, the null space of φ
is the solution set of the homogeneous linear equation

φ(u) = 0

with unknown u in V .

(a) Let F be a field. Suppose that A is an (m× n)-matrix with entries in F.
Recall the null space N (A) of the matrix A is given by N (A) = {x ∈ Fn : Ax = 0}.
Recall that the linear transformation defined by matrix multiplication from the left by A is the linear trans-
formation LA : Fn −→ Fm given by LA(x) = Ax for any x ∈ Fn.
The kernel N (LA) of LA is equal to the null space N (A) of the matrix A.

(b) i. Let c ∈ R. Define the function Ec : R[x] −→ R by Ec(f) = f(c) for any f(x) ∈ R[x].
Ec is a linear transformation from R[x] to R.
The kernel of Ec is {f(x) ∈ R[x] : f(c) = 0}. According to Factor Theorem, this is
{f(x) ∈ R[x] : f(x) is divisible by x− c}.

ii. Define the function T : R[x] −→ R[x] by (T (f))(x) = xf(x) for any f(x) ∈ R[x].
T is a linear transformation from R[x] to R[x].
The kernel of T is {0}. (Here 0 stands for the zero polynomial.)
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iii. Define the function S : R[x] −→ R[x] by (S(f))(x) = f(x)− f(0) for any f(x) ∈ R[x].
S is a linear transformation from R[x] to R[x].
The kernel of S is {f(x) ∈ R[x] : f(x) is a constant polynomial}.

(c) Let J be an open interval in R.

i. Let c ∈ J . Define the function Dc : C
1(J) −→ R by Dc(φ) = φ′(c) for any φ ∈ C1(J).

Dc is a linear transformation from C1(J) to R.
The kernel of Dc is the set of all real-valued functions on J which are continuously differentiable on J

and whose first derivatives vanish at the point c.
ii. Define the function D : C1(J) −→ C(J) by (D(φ))(x) = φ′(x) for any φ ∈ C1(J) for any x ∈ J .

D is a linear transformation from C1(J) to C(J).
The kernel of D is the set of all constant real-valued functions on J . (To verify this claim, you need to
apply the Mean-Value Theorem.)

(d) Let J be an interval in R.

i. Let c ∈ J .

Define the function Ic : C(J) −→ C1(J) by Ic(φ)(x) =
∫ x

c

φ for any φ ∈ C(J) for any x ∈ J .

Ic is a linear transformation from C(J) to C1(J).
The kernel of Ic is the singleton whose only element is the zero function on J . (To verify this claim, you
need to apply the Fundamental Theorem of the Calculus.)

ii. Let c ∈ J . Let f ∈ C(J).

Define the function T : C(J) −→ C1(J) by T (φ)(x) =
∫ x

c

φ · f for any φ ∈ C(J) for any x ∈ J .

T is a linear transformation from C(J) to C1(J).
The kernel of T is the set of all real-valued functions defined on J which are continuous on J and which
vanish on the set {t ∈ J : f(t) 6= 0}.

5. Theorem (3).
Let V,W be vector spaces over a field F, and φ : V −→W be a linear transformation over F.
The statements below are logically equivalent:

(a) φ is injective.

(b) For any x ∈ V , if φ(x) = 0 then x = 0.

(c) N (φ) = {0}.

Remark. Theorem (3) generalizes the result about matrices and vectors below:

Suppose A is an (m× n)-matrix with entries in a field F.
Then LA is injective iff N (A) = {0}.

6. Theorem (4).
Let V,W be vector spaces over a field F, and φ : V −→W be a linear transformation over F.

(a) Let x,u1,u2, · · · ,uk ∈ V .
Suppose x is a linear combination of u1,u2, · · · ,uk over F.
Then φ(x) is a linear combination of φ(u1), φ(u2), · · · , φ(uk) over F.

(b) Suppose S is a subset of V .
Then φ(SpanF(S)) = SpanF(φ(S)).

(c) Let S be a subset of V .
Suppose S is a spanning set for V over F.
Then φ(S) is a spanning set for φ(V ).

Remark. Theorem (4) generalizes the result about matrices and vectors below:
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Suppose A is an (m× n)-matrix with entries in a field F.
(Recall that LA : Fn −→ Fm is the function defined by LA(x) = Ax for any x ∈ Fn.)
The statements below hold:
(a) Let x,u1,u2, · · · ,uk ∈ Fn.

Suppose x is a linear combination of u1,u2, · · · ,uk.
Then Ax is a linear combination of Au1, Au2, · · · , Auk.

(b) Suppose u1,u2, · · · ,uk ∈ Fn, and U =
[

u1 u2 · · · uk

]
.

Then LA(C(U)) = C(AU).
(c) Let V be a subspace of Fn, and u1,u2, · · · ,uk ∈ Fn.

Suppose {u1,u2, · · · ,uk} is a spanning set for V over F.
Then {Au1, Au2, · · · , Auk} is a spanning set for LA(V ).

(d) LA(F
n) = C(A).

7. Theorem (5).
Let V,W be vector spaces over a field F, and φ : V −→W be a linear transformation over F.

(a) Let S be a subset of V . Suppose S is linearly dependent over F.
Then φ(S) is linear dependent over F.

(b) Let T be a subset of V . Suppose T is linearly independent over F. Further suppose φ is injective.
Then φ(T ) is linear independent over F.

Remark. Theorem (5) generalizes the result about matrices and vectors below:

Suppose A is an (m× n)-matrix with entries in a field F.
(a) Let u1,u2, · · · ,uk be pairwise distinct vectors in Fn. Suppose u1,u2, · · · ,uk are linearly dependent.

Then Au1, Au2, · · · , Auk are linearly dependent vectors in Fm.
(b) Let w1,w2, · · · ,wk be pairwise distinct vectors in Fn. Suppose w1,w2, · · · ,wk are linearly independent.

Further suppose N (A) = {0}.
Then Aw1, Aw2, · · · , Awk are linearly independent vectors in Fm.

8. Theorem (6).
Let V,W be vector spaces over a field F, and φ : V −→W be a linear transformation over F.
Let B be a base for V over F. Further suppose φ is injective.
Then φ(B) is a base for φ(V ) over F.

Corollary to Theorem (6).
Let V,W be vector spaces over a field F, and φ : V −→W be a linear transformation of F. Suppose φ is injective.
Then, for any subspace U of V , for any subset C of V , C is a base for U over F iff φ(C) is a base for φ(U) over F.

In particular, for any subset B of V , B is a base for V over F iff φ(B) is a base for φ(V ) over F.

9. Theorem (7).
Let V,W be vector spaces over a field F, and φ : V −→W be a linear transformation over F.
Let B be a base for N (φ) over F, and C be a base for V over F. Suppose B ⊂ C.

Then φ(C\B) is a base for φ(V ) over F.

10. Theorem (8).
Let V,W be vector spaces over a field F, and φ : V −→ W be a linear transformation over F. Suppose V is
finite-dimensional over F. The statements below hold:

(a) N (φ) is a finite-dimensional vector space over F, and dimF(N (φ)) ≤ dimF(V ). Equality holds iff φ(x) = 0
for any x ∈ V .

(b) Write k = dimF(V )− dimF(N (φ)). Suppose B is a base for N (φ) over F.
Then there exist some u1,u2, · · · ,uk ∈ V \N (φ) such that u1,u2, · · · ,uk are pairwise distinct,
φ(u1), φ(u2), · · · , φ(uk) are pairwise distinct, B ∪ {u1,u2, · · · ,uk} is a base for V over F, and
{φ(u1), φ(u2), · · · , φ(uk)} is a base for φ(V ) over F.
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(c) dimF(V ) = dimF(N (φ)) + dimF(φ(V )).

Remark on terminology. The dimension of (the finite-dimensional vector space) φ(V ) over F is called the
rank of the linear transformation φ.
Remark. The equality described in Statement (c) is known as the dimension formula (for a linear transfor-
mation whose domain is finite-dimensional). It generalizes the result about matrices and vectors below:

Suppose A is an (m× n)-matrix with entries in a field F. Then n = dimF(N (A)) + dimF(C(A)).

11. Definition.
Let V,W be vector spaces over a field F.

(a) Let φ : V −→W be a linear transformation of F.
φ is called a linear isomorphism if φ is bijective.

(b) V is said to be isomorphic to W as vector spaces over F if there is some linear isomorphism from V to W
over F.

Theorem (9).
Let V,W be vector spaces over a field F, and φ : V −→W be linear transformation over F.

Suppose φ is a linear isomorphism over F. Then the inverse function φ−1 :W −→ V of the bijective function φ a
linear isomorphism over F.

12. Theorem (10).
Let V,W be vector spaces over a field F, and φ : V −→W be linear transformation over F.
The statements below are logically equivalent:

(a) φ is a linear isomorphism over F.

(b) For any subset B of V , if B is a base for V over F then φ(B) is a base for W over F.

(c) For any subset C over W , if C is a base for W over F then φ−1(C) is a base for V over F.

13. Theorem (11).
Let V,W be vector spaces over a field F.
Let B be a base for V over F.
For any function f : B −→W , there exists some unique linear transformation φ : V −→W such that φ|B = f as
functions.
Remark on terminology. The function φ is called the linear transformation determined by linear extension
from f .

14. Theorem (12).
Let V,W be vector spaces over a field F.
The statements below are logically equivalent:

(a) V is isomorphic to W over F.

(b) For any subset B of V , if B is a base for V over F, then there exists some injective function f : B −→ W

such that f(B) is a base for W over F.

(c) There exist some subset C of V , some subset D of W , and some bijective function g : C −→ D such that C
is a base for V over F and D is a base for W over F.

Remark. We tacitly assume that every vector space over a field has a base over that field.

15. Theorem (13).

Let V be a vector space over a field F. Suppose V is finite- dimensional over F. Write n = dimF(V ).
Then the statements below hold:

(a) Let W be a vector space over F. Suppose V is isomorphic to W as vector spaces over F. Then W is
finite-dimensional, and dimF(W ) = n.
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(b) V is isomorphic to Fn as vector spaces over F.

(c) Let W be a finite-dimensional vector space over F. Suppose dimF(W ) = n. Then V is isomorphic to W as
vector spaces over F.

16. Examples on linear isomorphisms and isomorphic vector spaces.

(a) Let F be a field. Suppose that A is an (n× n)-square matrix with entries in F.
LA is a linear isomorphism from Fn to Fn iff A is non-singular.
Its inverse function LA

−1 is the linear transformation LA−1 .
(b) Let F be a field.

Recall that Matm×n(F) is a vector space over F, of dimension mn.
A base for Matm×n(F) over F is given by {Em,n

i,j | i ∈ J1,mK and j ∈ J1, nK}, in which each Em,n
i,j is the

(m× n)-matrix with entries in F whose (i, j)-th entry is 1 and whose other entries are all 0.
Matm×n(F) is isomorphic to Fmn over F as vector space over F.

Recall that a base for Fmn over F is given by {e(mn)
k | k ∈ J1,mnK}.

A bijective function f from {Em,n
i,j | i ∈ J1,mK and j ∈ J1, nK} to {e(mn)

k | k ∈ J1,mnK} is given by f(Em,n
i,j ) =

e(mn)
(i−1)n+j for any i ∈ J1,mK, j ∈ J1, nK.

A linear isomorphism from Matm×n(F) to Fmn over F is obtained by extending f by linearity.
When m = 2 and n = 3, the bijective function f is explicitly given by

[
1 0 0

0 0 0

]
7−→



1

0

0

0

0

0


,

[
0 1 0

0 0 0

]
7−→



0

1

0

0

0

0


,

[
0 0 1

0 0 0

]
7−→



0

0

1

0

0

0


,

[
0 0 0

1 0 0

]
7−→



0

0

0

1

0

0


,

[
0 0 0

0 1 0

]
7−→



0

0

0

0

1

0


,

[
0 0 0

0 0 1

]
7−→



0

0

0

0

0

1


.

(c) Recall that Map(N,R) is the set of all infinite sequences with real entries. It is a vector space over R.
An infinite sequence {an}∞n=0 in the reals is said to be terminating if there exists some N ∈ N such that for
any n ∈ N, if n > N then an = 0.
We denote by Map00(N,R) the set of all terminating infinite sequences in R.
Map00(N,R) is a subspace of Map(N,R) over R.
A base for Map00(N,R) is given by D = {δj | j ∈ N}. (Here for each j ∈ N, δj : N −→ R is given by

δj(x) =

{
1 if x = j

0 if x 6= j
.)

Recall that R[x] is the vector space of all polynomials with real coefficients.
A base for R[x] over R is given by E = {ej(x) | j ∈ N}. (Here, for any j ∈ N, ej(x) is the polynomial xj .)
A bijective function f : D −→ E is given by f(δj) = ej(x) for any j ∈ N.
Map00(N,R) is isomorphic to R[x] as vector spaces over R.
An linear isomorphism from Map00(N,R) to R[x] over R is obtained by extending f by linearity.

(d) Let J be an open interval in R.
Recall that C(J) is the vector space of all real-valued functions of one real variable with domain J which are
continuous on J .
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Also recall that C1(J) is the vector space of all real-valued functions of one real variable with domain J which
are continuously differentiable on J .
Differentiation defines the linear transformation D from C1(J) to C(J), given explicitly by (D(φ))(x) = φ′(x)

for any φ ∈ C1(J) for any x ∈ J .
Let a ∈ J .

Recall that the function Ia : C(J) −→ C1(J) defined by Ia(φ)(x) =
∫ x

a

ψ for any ψ ∈ C(J) for any x ∈ J is

a linear transformation from C(J) to C1(J).
Define C1(J ; a) = {φ ∈ C1(J) : φ(a) = 0}.
C1(J ; a) is a vector subspace of C1(J) over R.
It happens that Ia(C(J)) = C1(J ; a). (Why?)
The restriction of D to C1(J ; a) defines a linear transformation from C1(J ; a) to C(J). Denote this linear
transformation by ∆a. Hence by definition, ∆a(φ) = D(φ) for any φ ∈ C1(J ; a).
Also, for any φ ∈ C1(J ; a), Ia(D(φ)) = φ.
Moreover, for any ψ ∈ C(J), D(Ia(ψ)) = ψ.
It follows that ∆a is a linear isomorphism from C1(J ; a) to C(J), with its inverse function ∆a given explicitly
by ∆a

−1(ψ) = Ia(ψ) for any ψ ∈ C(J).

17. Theorem (14).
Let V be a vector space over a field F, and U be a subspace of V over F.
Define E(V,U) = {(x,y) | x − y ∈ U}, and R(V,U) = (V, V,E(V,U)).

Then R(V,U) is an equivalence relation in V .
Remarks on terminologies.

(a) The equivalence relation R(V,U) is called the equivalence relation in V induced by the subspace U

over F.
(b) The quotient in V by R(V,U) is denoted by V/U , and is called the quotient space of the vector space

V by the subspace U over F. (We are going to define a ‘natural’ vector space structure on the set V/U .)

(c) For any x ∈ V , the equivalence class of x under R(V,U) is denoted by x + U .
By definition, x + U = {y ∈ V : y = x + z for some z ∈ U}. (This set equality needs to be verified.)

(d) The quotient mapping from V to V/U refers to the quotient mapping from V to V/U induced by R(V, U),
given by x 7−→ x + U for any x ∈ V . It is denoted by q

V,U
.

18. Theorem (15).
Let V be a vector space over a field F, and U be a subspace of V over F.

(a) Define G
Σ
=

((J,K), L)

∣∣∣∣∣∣
J,K,L ∈ V/U and
there exists some x,y ∈ V such that
J = x + U , K = y + U , and L = (x + y) + U

, and Σ = ((V/U)2, V/U,G
Σ
).

Then Σ is a function from (V/U)2 to V/U , with graph GΣ .
Moreover, for any x,y ∈ V , Σ(x + U,y + U) = (x + y) + U .

(b) Define G
Π
=

((α, J),K)

∣∣∣∣∣∣
α ∈ F and J,K ∈ V/U and
there exists some x ∈ V such that
J = x + U and K = (αx) + U

, and Π = (F× (V/U), V/U,G
Π
).

Then Π is a function from F× (V/U) to V/U , with graph G
Π

.
Moreover, for any α ∈ F, for any x ∈ V , Π(α,x + U) = (αx) + U .

(c) V/U is a vector space over F with vector addition Σ and scalar multiplication Π.

(d) The quotient mapping q
V,U

: V −→ V/U is a surjective linear transformation, and N (q
V,U

) = U .

Remarks on terminologies and notations.
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(a) We call Σ the (vector) addition in (the quotient space) V/U . (Note that Σ is a closed binary operation
on V/U .)
From now on we agree to write Σ(J,K) as J +K for any J,K ∈ V/U .
Hence for any x,y ∈ V , we have (x + U) + (y + U) = (x + y) + U .

(b) We call Π the scalar multiplication in (the quotient space) V/U over (the field) F.
From now on we agree to write Π(α, J) as αJ for any α ∈ F, for any J ∈ V/U .
Hence for any α ∈ F, for any x ∈ V , we have α(x + U) = (αx) + U .

19. Theorem (16).
Let V,W be vector spaces over a field F, and φ : V −→W be a linear transformation. The statements below hold:

(a) For any x ∈ V , x +N (φ) = φ−1({φ(x)}).

(b) For any α, β ∈ F, for any y, z ∈ φ(V ), φ−1(αy + βz) = αφ−1({y}) + βφ−1({z}).

(c) V/N (φ) is isomorphic to φ(V ) as vector spaces over F and a linear isomorphism Υφ from φ(V ) to V/N (φ)

is given by Υφ : y 7−→ φ−1({y}) for any y ∈ N (φ).
The equality q

V,N(φ)
= Υφ ◦ φ holds.

20. Example on quotient vector spaces: Vector space of solution sets for systems of linear equations
with the same coefficient matrix.
Let F be a field. Suppose that A is an (m× n)-matrix with entries in a field F.

Recall that the linear transformation LA : Fn −→ Fm is given by LA(x) = Ax for any x ∈ Fn.

Recall that the kernel of LA is the null space N (A) of the matrix A, and is the solution space of the homogeneous
equation Au = 0 with unknown u ∈ Fn.
Also recall that LA(F

n) = C(A).

(a) Suppose p ∈ Fn and b ∈ C(A), and suppose ‘u = p’ is a solution of the linear equation Au = b with unknown
u in Fn.
Then LA

−1({b}) = LA
−1({LA(p)}) = p +N (A) = x +N (A) = {y ∈ Fn : y = p + h for some h ∈ N (A)}.

Recall that L−1
A ({b}) is the solution set of the linear equation Au = b with unknown u in Fn.

So the set equality LA
−1({b}) = p +N (A) is what we mean by the sentence below:

The general solution of the linear equation Au = b is given by (any) one particular solution, say ‘u = p’,
of the equation Au = b ‘added to’ the solution space of the homogeneous equation Au = 0.

(b) The vector space Fn/N (A) is isomorphic to C(A) as vector spaces over F,
A linear isomorphism ΥLA

from C(A) to Fn/N (A) is given by ΥLA
: b 7−→ LA

−1({b}) for any b ∈ C(A).
This tells us that the set of the non-empty solution sets of the linear equations with the same coefficient
matrix A but with various vectors of constant are provided, via ΥLA

, with a natural linear structure, namely,
that of Fn/N (A).

(c) Suppose b, c ∈ C(A). Then the equality LA
−1({b + c}) = LA

−1({b}) + LA
−1({c}) holds.

This equality is what we mean by the sentence below:
The general solution of the linear equation Au = b + b is the same as ‘adding up’ the general solution
of the equation Au = b and the general solution of the equation Au = c.

(d) Suppose b ∈ C(A), and β ∈ F. Then the equality LA
−1({βb}) = βLA

−1({b}) holds.
This equality is what we mean by the sentence below:

The general solution of the linear equation Au = βb is the same as ‘multiplying’ the general solution of
the equation Au = b by the scalar β.

21. Example on quotient spaces: Vector space of indefinite integrals.
Let J be an open interval in R. Recall that C(J) is the set of all real-valued functions with domain J which is
continuous on J . Recall that C1(J) is the set of all real-valued functions with domain J which is continuously
differentiable on J .
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Define the function D : C1(J) −→ C(J) by D(h) = h′ for any h ∈ C1(J).

Note that D is a surjective and non-injective linear transformation. (Why?)

Note that the kernel N (D) of the linear transformation D is the vector space of all constant real-valued functions
on J , which is a subspace of C1(J). (This is a consequence of the Mean-Value Theorem.)

The vector space C1(J)/N (D) is isomorphic to C(J) as vector spaces over R.

(a) Suppose h ∈ C1(J) and u ∈ C(J), and suppose h′ = u.
Then D−1({u}) = D−1({D(h)}) = h+N (D) = {g ∈ C1(J) : g = h+ C for some C ∈ N (D)}.
Recall that D−1({u}) is the set of all primitives of the continuous function u on the interval J . It is the

indefinite integral
∫
u(x)dx.

So the set equality D−1({u}) = h+N (D) is what we mean by the ‘formula’∫
u(x)dx = h(x) + C, where C is an arbitrary constant

(b) Suppose u, v ∈ C(J) and α, β ∈ R. Then the equality D−1({αu+ βv}) = αD−1({u}) + βD−1({v}) holds. It
is what we mean by the ‘formula’∫

(αu(x) + βv(x))dx = α

∫
u(x)dx+ β

∫
v(x)dx.
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