- 0. (a) The handout is a continuation of the Handouts *Linear algebra beyond systems of linear equations and manipulation of matrices*, *Spanning sets, linearly independent sets, and bases*.
	- (b) The justification for the theoretical results and the claims in the concrete examples are left as exercises in the use of sets, functions and equivalence relations in *set language*.

1. **Theorem (1).**

Let V, W be vector spaces over a field \mathbb{F} *, and* $\varphi : V \longrightarrow W$ *be a linear transformation over* \mathbb{F} *.*

The statements below hold:

- (a) *Suppose U* is a subspace of *V* over **F**. Then $\varphi(U)$ is a subspace of *W* over **F**.
- (b) Let U_1, U_2 be subspaces of V over F. Suppose U_1 is a subspace of U_2 over F. Then $\varphi(U_1)$ is a subspace of $\varphi(U_2)$ *over* **F**.
- (c) *Suppose* U_1, U_2 *are subspaces of V over* F. Then $\varphi(U_1 + U_2) = \varphi(U_1) + \varphi(U_2)$ *as vector spaces over* F.
- (d) Suppose U_1, U_2 are subspaces of V over IF. Then $\varphi(U_1 \cap U_2)$ is a subspace of $\varphi(U_1) \cap \varphi(U_2)$ over IF.

2. **Theorem (2).**

Let V, W be vector spaces over a field \mathbb{F} *, and* $\varphi : V \longrightarrow W$ *be a linear transformation over* \mathbb{F} *.*

The statements below hold:

- (a) Suppose *U* is a subspace of *W* over **F**. Then $\varphi^{-1}(U)$ is a subspace of *V* over **F**.
- (b) Let U_1, U_2 be subspaces of W over F. Suppose U_1 is a subspace of U_2 over F. Then $\varphi^{-1}(U_1)$ is a subspace of $\varphi^{-1}(U_2)$ *over* **IF**.
- (c) Suppose U_1, U_2 are subspaces of W over \mathbb{F} . Then $\varphi^{-1}(U_1+U_2) = \varphi^{-1}(U_1)+\varphi^{-1}(U_2)$ as vector spaces over \mathbb{F} .
- (d) Suppose U_1, U_2 are subspaces of W over \mathbb{F} . Then $\varphi^{-1}(U_1 \cap U_2) = \varphi^{-1}(U_1) \cap \varphi^{-1}(U_2)$ as vector spaces over \mathbb{F} .

3. **Definition.**

Let V, W be vector spaces over a field \mathbb{F} *, and* $\varphi : V \longrightarrow W$ *be a linear transformation over* \mathbb{F} *.*

The subspace $\varphi^{-1}(\{0\})$ *of V is called the* **kernel of the linear transformation** φ *. It is denoted by* $\mathcal{N}(\varphi)$ *.*

Remark on terminology. The kernel of *T* is also called the **null space of** φ .

4. **Examples on null spaces.**

Refer to the Handout *Linear algebra beyond systems of linear equations and manipulation of matrices* . Given that *V, W* are vector spaces over a field F, and $\varphi: V \longrightarrow W$ is a linear transformation over F, the null space of φ is the solution set of the homogeneous linear equation

$$
\varphi({\bf u})={\bf 0}
$$

with unknown **u** in *V* .

(a) Let \mathbb{F} be a field. Suppose that *A* is an $(m \times n)$ -matrix with entries in \mathbb{F} .

Recall the null space $\mathcal{N}(A)$ of the matrix *A* is given by $\mathcal{N}(A) = {\mathbf{x} \in \mathbb{F}^n : A\mathbf{x} = \mathbf{0}}.$

Recall that the linear transformation defined by matrix multiplication from the left by *A* is the linear transformation $L_A: \mathbb{F}^n \longrightarrow \mathbb{F}^m$ given by $L_A(\mathbf{x}) = A\mathbf{x}$ for any $\mathbf{x} \in \mathbb{F}^n$.

The kernel $\mathcal{N}(L_A)$ of L_A is equal to the null space $\mathcal{N}(A)$ of the matrix *A*.

- (b) i. Let $c \in \mathbb{R}$. Define the function $E_c : \mathbb{R}[x] \longrightarrow \mathbb{R}$ by $E_c(f) = f(c)$ for any $f(x) \in \mathbb{R}[x]$. E_c is a linear transformation from $\mathbb{R}[x]$ to \mathbb{R} . The kernel of E_c is $\{f(x) \in \mathbb{R}[x] : f(c) = 0\}$. According to Factor Theorem, this is ${f(x) \in \mathbb{R}[x] : f(x) \text{ is divisible by } x - c}$.
	- ii. Define the function *T* : $\mathbb{R}[x] \longrightarrow \mathbb{R}[x]$ by $(T(f))(x) = xf(x)$ for any $f(x) \in \mathbb{R}[x]$. *T* is a linear transformation from $\mathbb{R}[x]$ to $\mathbb{R}[x]$.

The kernel of *T* is *{*0*}*. (Here 0 stands for the zero polynomial.)

- iii. Define the function $S : \mathbb{R}[x] \longrightarrow \mathbb{R}[x]$ by $(S(f))(x) = f(x) f(0)$ for any $f(x) \in \mathbb{R}[x]$. *S* is a linear transformation from $\mathbb{R}[x]$ to $\mathbb{R}[x]$. The kernel of *S* is $\{f(x) \in \mathbb{R}[x] : f(x)$ is a constant polynomial.
- (c) Let *J* be an open interval in R.
	- i. Let $c \in J$. Define the function $D_c : C^1(J) \longrightarrow \mathbb{R}$ by $D_c(\varphi) = \varphi'(c)$ for any $\varphi \in C^1(J)$. D_c is a linear transformation from $C^1(J)$ to \mathbb{R} . The kernel of D_c is the set of all real-valued functions on *J* which are continuously differentiable on *J* and whose first derivatives vanish at the point *c*.
	- ii. Define the function $D: C^1(J) \longrightarrow C(J)$ by $(D(\varphi))(x) = \varphi'(x)$ for any $\varphi \in C^1(J)$ for any $x \in J$. D is a linear transformation from $C^1(J)$ to $C(J)$. The kernel of *D* is the set of all constant real-valued functions on *J*. (To verify this claim, you need to apply the Mean-Value Theorem.)
- (d) Let *J* be an interval in R.
	- i. Let $c \in J$.

Define the function $I_c: C(J) \longrightarrow C^1(J)$ by $I_c(\varphi)(x) = \int_c^x$ φ for any $\varphi \in C(J)$ for any $x \in J$.

 I_c is a linear transformation from $C(J)$ to $C^1(J)$.

The kernel of I_c is the singleton whose only element is the zero function on J . (To verify this claim, you need to apply the Fundamental Theorem of the Calculus.)

ii. Let *c* ∈ *J*. Let *f* ∈ $C(J)$.

Define the function
$$
T : C(J) \longrightarrow C^1(J)
$$
 by $T(\varphi)(x) = \int_c^x \varphi \cdot f$ for any $\varphi \in C(J)$ for any $x \in J$.

T is a linear transformation from $C(J)$ to $C^1(J)$.

The kernel of *T* is the set of all real-valued functions defined on *J* which are continuous on *J* and which vanish on the set $\{t \in J : f(t) \neq 0\}$.

5. **Theorem (3).**

Let V, W be vector spaces over a field \mathbb{F} *, and* $\varphi : V \longrightarrow W$ *be a linear transformation over* \mathbb{F} *.*

The statements below are logically equivalent:

- (a) φ *is injective.*
- (b) *For any* $\mathbf{x} \in V$, *if* $\varphi(\mathbf{x}) = \mathbf{0}$ *then* $\mathbf{x} = \mathbf{0}$ *.*
- (c) $\mathcal{N}(\varphi) = \{\mathbf{0}\}.$

Remark. Theorem (3) generalizes the result about matrices and vectors below:

Suppose A is an $(m \times n)$ *-matrix with entries in a field* **F***. Then* L_A *is injective iff* $\mathcal{N}(A) = \{0\}.$

6. **Theorem (4).**

Let V, W be vector spaces over a field \mathbb{F} *, and* $\varphi : V \longrightarrow W$ *be a linear transformation over* \mathbb{F} *.*

- (a) Let $\mathbf{x}, \mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k \in V$. *Suppose* **x** *is a linear combination of* $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k$ *over* F. *Then* $\varphi(\mathbf{x})$ *is a linear combination of* $\varphi(\mathbf{u}_1), \varphi(\mathbf{u}_2), \cdots, \varphi(\mathbf{u}_k)$ *over* **F**.
- (b) *Suppose S is a subset of V .* $\text{Then } \varphi(\text{Span}_{\mathbb{F}}(S)) = \text{Span}_{\mathbb{F}}(\varphi(S)).$
- (c) Let S be a subset of V . *Suppose S is a spanning set for V over* F*. Then* $\varphi(S)$ *is a spanning set for* $\varphi(V)$ *.*

Remark. Theorem (4) generalizes the result about matrices and vectors below:

Suppose A is an $(m \times n)$ *-matrix with entries in a field* F. *(Recall that* L_A : \mathbb{F}^n → \mathbb{F}^m *is the function defined by* $L_A(\mathbf{x}) = A\mathbf{x}$ *for any* $\mathbf{x} \in \mathbb{F}^n$ *.*) *The statements below hold:*

- (a) Let $\mathbf{x}, \mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k \in \mathbb{F}^n$. *Suppose* **x** *is a linear combination of* $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k$ *. Then* A **x** *is a linear combination of* A **u**₁*,* A **u**₂*, · · · · <i>,* A **u**_{*k*}*.*
- (b) Suppose $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k \in \mathbb{F}^n$, and $U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_k \end{bmatrix}$. *Then* $L_A(\mathcal{C}(U)) = \mathcal{C}(AU)$.
- (c) Let *V* be a subspace of \mathbb{F}^n , and $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k \in \mathbb{F}^n$. *Suppose* ${\bf u}_1, {\bf u}_2, \cdots, {\bf u}_k$ *s is a spanning set for V over* **F***. Then* $\{Au_1, Au_2, \cdots, Au_k\}$ *is a spanning set for* $L_A(V)$ *.*
- (d) $L_A(\mathbb{F}^n) = C(A)$.

7. **Theorem (5).**

Let V, W be vector spaces over a field \mathbb{F} *, and* $\varphi : V \longrightarrow W$ *be a linear transformation over* \mathbb{F} *.*

- (a) *Let S be a subset of V . Suppose S is linearly dependent over* F*. Then* $\varphi(S)$ *is linear dependent over* **F***.*
- (b) Let *T* be a subset of *V*. Suppose *T* is linearly independent over **F**. Further suppose φ is injective. *Then* $\varphi(T)$ *is linear independent over* **F***.*

Remark. Theorem (5) generalizes the result about matrices and vectors below:

Suppose A is an $(m \times n)$ *-matrix with entries in a field* **F***.*

- (a) Let $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$ be pairwise distinct vectors in \mathbb{F}^n . Suppose $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$ are linearly dependent. *Then* A **u**₁*,* A **u**₂*,* \cdots *,* A **u**_{*k*} are linearly dependent vectors in \mathbb{F}^m *.*
- (b) Let $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k$ be pairwise distinct vectors in \mathbb{F}^n . Suppose $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k$ are linearly independent. *Further suppose* $\mathcal{N}(A) = \{0\}$ *.*

Then $A\mathbf{w}_1, A\mathbf{w}_2, \cdots, A\mathbf{w}_k$ are linearly independent vectors in \mathbb{F}^m .

8. **Theorem (6).**

Let V, W be vector spaces over a field \mathbb{F} *, and* $\varphi : V \longrightarrow W$ *be a linear transformation over* \mathbb{F} *.*

Let B be a base for V over **F**. Further suppose φ *is injective.*

Then $\varphi(B)$ *is a base for* $\varphi(V)$ *over* **F***.*

Corollary to Theorem (6).

Let V, W be vector spaces over a field \mathbb{F} *, and* $\varphi: V \longrightarrow W$ *be a linear transformation of* \mathbb{F} *. Suppose* φ *is injective.* Then, for any subspace U of V, for any subset C of V, C is a base for U over $\mathbb F$ iff $\varphi(C)$ is a base for $\varphi(U)$ over $\mathbb F$. *In particular, for any subset B of V*, *B is a base for V over* **F** *iff* $\varphi(B)$ *is a base for* $\varphi(V)$ *over* **F**.

9. **Theorem (7).**

Let V, W be vector spaces over a field \mathbb{F} *, and* $\varphi : V \longrightarrow W$ *be a linear transformation over* \mathbb{F} *. Let B be a base for* $\mathcal{N}(\varphi)$ *over* **F**, and *C be a base for V over* **F**. Suppose $B \subset C$ *.*

Then $\varphi(C \backslash B)$ *is a base for* $\varphi(V)$ *over* **F***.*

10. **Theorem (8).**

Let V, W be vector spaces over a field \mathbb{F} *, and* $\varphi: V \longrightarrow W$ *be a linear transformation over* \mathbb{F} *. Suppose V is finite-dimensional over* F*. The statements below hold:*

- (a) $\mathcal{N}(\varphi)$ is a finite-dimensional vector space over **F**, and $\dim_{\mathbb{F}}(\mathcal{N}(\varphi)) \leq \dim_{\mathbb{F}}(V)$. Equality holds iff $\varphi(\mathbf{x}) = \mathbf{0}$ *for any* $\mathbf{x} \in V$ *.*
- (b) *Write* $k = \dim_{\mathbb{F}}(V) \dim_{\mathbb{F}}(\mathcal{N}(\varphi))$ *. Suppose B* is a base for $\mathcal{N}(\varphi)$ over **F**. Then there exist some $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k \in V \setminus \mathcal{N}(\varphi)$ such that $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k$ are pairwise distinct, $\varphi(\mathbf{u}_1), \varphi(\mathbf{u}_2), \cdots, \varphi(\mathbf{u}_k)$ are pairwise distinct, $B \cup \{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k\}$ is a base for V over \mathbb{F} , and $\{\varphi(\mathbf{u}_1), \varphi(\mathbf{u}_2), \cdots, \varphi(\mathbf{u}_k)\}\$ is a base for $\varphi(V)$ over **F**.

(c) $\dim_{\mathbb{F}}(V) = \dim_{\mathbb{F}}(\mathcal{N}(\varphi)) + \dim_{\mathbb{F}}(\varphi(V)).$

Remark on terminology. The dimension of (the finite-dimensional vector space) $\varphi(V)$ over F is called the **rank** of the linear transformation *φ*.

Remark. The equality described in Statement (c) is known as the **dimension formula** (for a linear transformation whose domain is finite-dimensional). It generalizes the result about matrices and vectors below:

Suppose A is an $(m \times n)$ -matrix with entries in a field F. Then $n = \dim_F(\mathcal{N}(A)) + \dim_F(\mathcal{C}(A))$.

11. **Definition.**

Let V, W be vector spaces over a field F*.*

(a) Let $\varphi: V \longrightarrow W$ be a linear transformation of \mathbb{F} .

 φ *is called a* **linear isomorphism** *if* φ *is bijective.*

(b) *V is said to be* **isomorphic** *to W as vector spaces over* F *if there is some linear isomorphism from V to W over* F*.*

Theorem (9).

Let V, W be vector spaces over a field \mathbb{F} *, and* $\varphi : V \longrightarrow W$ *be linear transformation over* \mathbb{F} *.*

Suppose φ *is a linear isomorphism over* **F**. Then the inverse function $\varphi^{-1}: W \longrightarrow V$ of the bijective function φ *a linear isomorphism over* F*.*

12. **Theorem (10).**

Let V, W be vector spaces over a field \mathbb{F} *, and* $\varphi : V \longrightarrow W$ *be linear transformation over* \mathbb{F} *.*

The statements below are logically equivalent:

- (a) φ *is a linear isomorphism over* **F**.
- (b) For any subset B of V, if B is a base for V over \mathbb{F} then $\varphi(B)$ is a base for W over \mathbb{F} .
- (c) For any subset C over W, if C is a base for W over \mathbb{F} then $\varphi^{-1}(C)$ is a base for V over \mathbb{F} .

13. **Theorem (11).**

Let V, W be vector spaces over a field F*.*

Let B be a base for V over F*.*

For any function $f: B \longrightarrow W$ *, there exists some unique linear transformation* $\varphi: V \longrightarrow W$ *such that* $\varphi|_B = f$ *as functions.*

Remark on terminology. The function φ is called the linear transformation determined by **linear extension** from *f*.

14. **Theorem (12).**

Let V, W be vector spaces over a field F*.*

The statements below are logically equivalent:

- (a) *V* is isomorphic to *W* over \mathbb{F} .
- (b) For any subset *B* of *V*, if *B* is a base for *V* over **F**, then there exists some injective function $f : B \longrightarrow W$ *such that* $f(B)$ *is a base for W over* **F***.*
- (c) There exist some subset C of V, some subset D of W, and some bijective function $g: C \longrightarrow D$ such that C *is a base for V over* F *and D is a base for W over* F*.*

Remark. We tacitly assume that every vector space over a field has a base over that field.

15. **Theorem (13).**

Let V be a vector space over a field **F***. Suppose V is finite- dimensional over* **F***. Write* $n = \dim_{\mathbb{F}}(V)$ *. Then the statements below hold:*

(a) *Let W be a vector space over* F*. Suppose V is isomorphic to W as vector spaces over* F*. Then W is finite-dimensional, and dim_F(<i>W*) = *n*.

- (b) *V* is isomorphic to \mathbb{F}^n as vector spaces over \mathbb{F} .
- (c) Let *W* be a finite-dimensional vector space over F. Suppose dim_F $(W) = n$. Then *V* is isomorphic to *W* as *vector spaces over* F*.*

16. **Examples on linear isomorphisms and isomorphic vector spaces.**

- (a) Let IF be a field. Suppose that *A* is an $(n \times n)$ -square matrix with entries in IF. L_A is a linear isomorphism from \mathbb{F}^n to \mathbb{F}_n iff *A* is non-singular. Its inverse function L_A^{-1} is the linear transformation $L_{A^{-1}}$.
- (b) Let F be a field.

Recall that $\mathsf{Mat}_{m\times n}(\mathbb{F})$ is a vector space over \mathbb{F} , of dimension mn.

A base for $\text{Mat}_{m\times n}(\mathbb{F})$ over \mathbb{F} is given by $\{E_{i,j}^{m,n} \mid i \in [1,m] \text{ and } j \in [1,n]\}$, in which each $E_{i,j}^{m,n}$ is the $(m \times n)$ -matrix with entries in F whose (i, j) -th entry is 1 and whose other entries are all 0.

 $\mathsf{Mat}_{m \times n}(\mathbb{F})$ is isomorphic to \mathbb{F}^{mn} over \mathbb{F} as vector space over $\mathbb{F}.$

Recall that a base for \mathbb{F}^{mn} over \mathbb{F} is given by $\{\mathbf{e}_k^{(mn)}\}$ $\binom{mn}{k}$ | $k \in [\![1, mn]\!]$.

A bijective function *f* from ${E_{i,j}^{m,n} \mid i \in [\![1,m]\!] \text{ and } j \in [\![1,n]\!] }$ to ${\{\mathbf{e}_k^{(mn)}\}}$ $\{ (mn) \mid k \in [1, mn] \}$ is given by $f(E_{i,j}^{m,n}) =$ $\mathbf{e}^{(mn)}_{(i=1)}$ $\lim_{(i-1)n+j}$ for any $i \in [\![1,m]\!], j \in [\![1,n]\!].$

A linear isomorphism from $\mathsf{Mat}_{m \times n}(\mathbb{F})$ to \mathbb{F}^{mn} over \mathbb{F} is obtained by extending f by linearity. When $m = 2$ and $n = 3$, the bijective function f is explicitly given by

$$
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \qquad \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \qquad \begin{bmatrix} 0 & 0 & 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \qquad \begin{bmatrix} 0 & 0 & 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix},
$$

$$
\begin{bmatrix} 0 & 0 & 0 \\ 0 \\ 1 & 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \qquad \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}.
$$

(c) Recall that Map(N*,* R) is the set of all infinite sequences with real entries. It is a vector space over R. An infinite sequence $\{a_n\}_{n=0}^{\infty}$ in the reals is said to be terminating if there exists some $N \in \mathbb{N}$ such that for any $n \in \mathbb{N}$, if $n > N$ then $a_n = 0$.

We denote by $\mathsf{Map}_{00}(\mathsf{N}, \mathbb{R})$ the set of all terminating infinite sequences in \mathbb{R} .

 $Map_{00}(N, \mathbb{R})$ is a subspace of $Map(N, \mathbb{R})$ over \mathbb{R} .

A base for $\mathsf{Map}_{00}(\mathbb{N}, \mathbb{R})$ is given by $D = \{\delta_j \mid j \in \mathbb{N}\}\$. (Here for each $j \in \mathbb{N}, \delta_j : \mathbb{N} \longrightarrow \mathbb{R}$ is given by $\delta_j(x) = \begin{cases}$ 1 if *x* = *j* .)

$$
\delta_j(x) = \begin{cases} 1 & \text{if } x = j \\ 0 & \text{if } x \neq j \end{cases}
$$

Recall that $\mathbb{R}[x]$ is the vector space of all polynomials with real coefficients.

A base for $\mathbb{R}[x]$ over \mathbb{R} is given by $E = \{e_j(x) | j \in \mathbb{N}\}\$. (Here, for any $j \in \mathbb{N}$, $e_j(x)$ is the polynomial x^j .) A bijective function $f: D \longrightarrow E$ is given by $f(\delta_i) = e_i(x)$ for any $j \in \mathbb{N}$.

 $\mathsf{Map}_{00}(\mathsf{N}, \mathsf{IR})$ is isomorphic to $\mathsf{IR}[x]$ as vector spaces over IR .

An linear isomorphism from $\mathsf{Map}_{00}(\mathsf{N}, \mathbb{R})$ to $\mathbb{R}[x]$ over \mathbb{R} is obtained by extending f by linearity.

(d) Let *J* be an open interval in R.

Recall that $C(J)$ is the vector space of all real-valued functions of one real variable with domain *J* which are continuous on *J*.

Also recall that $C^1(J)$ is the vector space of all real-valued functions of one real variable with domain *J* which are continuously differentiable on *J*.

Differentiation defines the linear transformation *D* from $C^1(J)$ to $C(J)$, given explicitly by $(D(\varphi))(x) = \varphi'(x)$ for any $\varphi \in C^1(J)$ for any $x \in J$.

Let $a \in J$.

Recall that the function $I_a: C(J) \longrightarrow C^1(J)$ defined by $I_a(\varphi)(x) = \int_a^x$ ψ for any $\psi \in C(J)$ for any $x \in J$ is a linear transformation from $C(J)$ to $C^1(J)$.

Define $C^1(J; a) = \{ \varphi \in C^1(J) : \varphi(a) = 0 \}.$

 $C^1(J; a)$ is a vector subspace of $C^1(J)$ over \mathbb{R} .

It happens that $I_a(C(J)) = C^1(J; a)$. (Why?)

The restriction of *D* to $C^1(J; a)$ defines a linear transformation from $C^1(J; a)$ to $C(J)$. Denote this linear transformation by Δ_a . Hence by definition, $\Delta_a(\varphi) = D(\varphi)$ for any $\varphi \in C^1(J; a)$.

Also, for any $\varphi \in C^1(J; a)$, $I_a(D(\varphi)) = \varphi$.

Moreover, for any $\psi \in C(J)$, $D(I_a(\psi)) = \psi$.

It follows that Δ_a is a linear isomorphism from $C^1(J; a)$ to $C(J)$, with its inverse function Δ_a given explicitly by $\Delta_a^{-1}(\psi) = I_a(\psi)$ for any $\psi \in C(J)$.

17. **Theorem (14).**

Let *V* be a vector space over a field \mathbb{F} , and *U* be a subspace of *V* over \mathbb{F} .

Define $E(V, U) = \{(\mathbf{x}, \mathbf{y}) \mid \mathbf{x} - \mathbf{y} \in U\}$, and $R(V, U) = (V, V, E(V, U))$.

Then $R(V, U)$ *is an equivalence relation in* V .

Remarks on terminologies.

- (a) The equivalence relation $R(V, U)$ is called the **equivalence relation in** V **induced by the subspace** U **over** F.
- (b) The quotient in *V* by $R(V, U)$ is denoted by V/U , and is called the **quotient space of the vector space** *V* by the subspace *U* over F. (We are going to define a 'natural' vector space structure on the set V/U .)
- (c) For any $\mathbf{x} \in V$, the equivalence class of **x** under $R(V, U)$ is denoted by $\mathbf{x} + U$. By definition, $\mathbf{x} + U = \{ \mathbf{y} \in V : \mathbf{y} = \mathbf{x} + \mathbf{z} \text{ for some } \mathbf{z} \in U \}$. (This set equality needs to be verified.)
- (d) The **quotient mapping from** *V* **to** V/U refers to the quotient mapping from *V* to V/U induced by $R(V, U)$, given by $\mathbf{x} \mapsto \mathbf{x} + U$ for any $\mathbf{x} \in V$. It is denoted by $q_{V,U}$.

18. **Theorem (15).**

Let *V* be a vector space over a field \mathbb{F} , and *U* be a subspace of *V* over \mathbb{F} .

(a) Define
$$
G_{\Sigma} = \left\{ ((J, K), L) \middle| \begin{array}{l} J, K, L \in V/U \text{ and} \\ \text{there exists some } \mathbf{x}, \mathbf{y} \in V \text{ such that} \\ J = \mathbf{x} + U, K = \mathbf{y} + U, \text{ and } L = (\mathbf{x} + \mathbf{y}) + U \end{array} \right\}
$$
, and $\Sigma = ((V/U)^2, V/U, G_{\Sigma})$.

Then Σ *is a function from* $(V/U)^2$ *to* V/U *, with graph* G_{Σ} *.*

Moreover, for any $\mathbf{x}, \mathbf{y} \in V$, $\Sigma(\mathbf{x} + U, \mathbf{y} + U) = (\mathbf{x} + \mathbf{y}) + U$.

(b) *Define* G_{Π} = $\sqrt{ }$ $\frac{1}{2}$ \mathbf{I} $((\alpha, J), K)$ $\alpha \in \mathbb{F}$ and $J, K \in V/U$ and there exists some $\mathbf{x} \in V$ such that $J = \mathbf{x} + U$ and $K = (\alpha \mathbf{x}) + U$ λ \mathbf{I} \mathbf{J} *,* and $\Pi = (\mathbb{F} \times (V/U), V/U, G_{\text{n}})$ *.*

Then Π *is a function from* $\mathbb{F} \times (V/U)$ *to* V/U *, with graph* G_n *.*

Moreover, for any $\alpha \in \mathbb{F}$ *, for any* $\mathbf{x} \in V$ *,* $\Pi(\alpha, \mathbf{x} + U) = (\alpha \mathbf{x}) + U$ *.*

- (c) V/U *is a vector space over* \mathbb{F} *with vector addition* Σ *and scalar multiplication* Π *.*
- (d) The quotient mapping $q_{V,U}: V \longrightarrow V/U$ is a surjective linear transformation, and $\mathcal{N}(q_{V,U}) = U$.

Remarks on terminologies and notations.

(a) We call Σ the **(vector) addition in (the quotient space)** V/U **. (Note that** Σ **is a closed binary operation** on V/U .)

From now on we agree to write $\Sigma(J, K)$ as $J + K$ for any $J, K \in V/U$.

- Hence for any $\mathbf{x}, \mathbf{y} \in V$, we have $(\mathbf{x} + U) + (\mathbf{y} + U) = (\mathbf{x} + \mathbf{y}) + U$.
- (b) We call Π the **scalar multiplication in (the quotient space)** *V /U* **over (the field)** F**.** From now on we agree to write $\Pi(\alpha, J)$ as αJ for any $\alpha \in \mathbb{F}$, for any $J \in V/U$. Hence for any $\alpha \in \mathbb{F}$, for any $\mathbf{x} \in V$, we have $\alpha(\mathbf{x} + U) = (\alpha \mathbf{x}) + U$.

19. **Theorem (16).**

Let V, *W be vector spaces over a field* \mathbb{F} *, and* $\varphi: V \longrightarrow W$ *be a linear transformation. The statements below hold:*

- (a) *For any* $\mathbf{x} \in V$, $\mathbf{x} + \mathcal{N}(\varphi) = \varphi^{-1}(\{\varphi(\mathbf{x})\}).$
- (b) For any $\alpha, \beta \in \mathbb{F}$, for any $\mathbf{y}, \mathbf{z} \in \varphi(V)$, $\varphi^{-1}(\alpha \mathbf{y} + \beta \mathbf{z}) = \alpha \varphi^{-1}(\{\mathbf{y}\}) + \beta \varphi^{-1}(\{\mathbf{z}\}).$
- (c) $V/N(\varphi)$ is isomorphic to $\varphi(V)$ as vector spaces over F and a linear isomorphism Υ_{φ} from $\varphi(V)$ to $V/N(\varphi)$ *is given by* $\Upsilon_{\varphi} : \mathbf{y} \longmapsto \varphi^{-1}(\{\mathbf{y}\})$ *for any* $\mathbf{y} \in \mathcal{N}(\varphi)$ *.* The equality $q_{V,N(\varphi)} = \Upsilon_{\varphi} \circ \varphi$ holds.

20. **Example on quotient vector spaces: Vector space of solution sets for systems of linear equations with the same coefficient matrix.**

Let \mathbb{F} be a field. Suppose that *A* is an $(m \times n)$ -matrix with entries in a field \mathbb{F} .

Recall that the linear transformation $L_A : \mathbb{F}^n \longrightarrow \mathbb{F}^m$ is given by $L_A(\mathbf{x}) = A\mathbf{x}$ for any $\mathbf{x} \in \mathbb{F}^n$.

Recall that the kernel of L_A is the null space $\mathcal{N}(A)$ of the matrix A, and is the solution space of the homogeneous equation A **u** = **0** with unknown **u** \in **F**^{*n*}.

Also recall that $L_A(\mathbb{F}^n) = C(A)$.

(a) Suppose $\mathbf{p} \in \mathbb{F}^n$ and $\mathbf{b} \in \mathcal{C}(A)$, and suppose '**u** = **p**' is a solution of the linear equation $A\mathbf{u} = \mathbf{b}$ with unknown **u** in \mathbb{F}^n .

Then $L_A^{-1}(\{\mathbf{b}\}) = L_A^{-1}(\{L_A(\mathbf{p})\}) = \mathbf{p} + \mathcal{N}(A) = \mathbf{x} + \mathcal{N}(A) = \{\mathbf{y} \in \mathbb{F}^n : \mathbf{y} = \mathbf{p} + \mathbf{h} \text{ for some } \mathbf{h} \in \mathcal{N}(A)\}.$

Recall that $L_A^{-1}(\{\mathbf{b}\})$ is the solution set of the linear equation $A\mathbf{u} = \mathbf{b}$ with unknown **u** in \mathbb{F}^n .

So the set equality $L_A^{-1}(\{\mathbf{b}\}) = \mathbf{p} + \mathcal{N}(A)$ is what we mean by the sentence below:

The general solution of the linear equation A **u** = **b** *is given by (any) one particular solution, say* $'$ **u** = **p**['], *of the equation* A **u** = **b** *'added to' the solution space of the homogeneous equation* A **u** = **0***.*

(b) The vector space $\mathbb{F}^n/\mathcal{N}(A)$ is isomorphic to $\mathcal{C}(A)$ as vector spaces over \mathbb{F} ,

A linear isomorphism Υ_{L_A} from $\mathcal{C}(A)$ to $\mathbb{F}^n/\mathcal{N}(A)$ is given by $\Upsilon_{L_A} : \mathbf{b} \mapsto L_A^{-1}(\{\mathbf{b}\})$ for any $\mathbf{b} \in \mathcal{C}(A)$. This tells us that the set of the non-empty solution sets of the linear equations with the same coefficient matrix *A* but with various vectors of constant are provided, via Υ_{L_A} , with a natural linear structure, namely, that of $\mathsf{IF}^n/\mathcal{N}(A)$.

(c) Suppose $\mathbf{b}, \mathbf{c} \in \mathcal{C}(A)$. Then the equality $L_A^{-1}(\{\mathbf{b}+\mathbf{c}\}) = L_A^{-1}(\{\mathbf{b}\}) + L_A^{-1}(\{\mathbf{c}\})$ holds. This equality is what we mean by the sentence below:

The general solution of the linear equation $A\mathbf{u} = \mathbf{b} + \mathbf{b}$ *is the same as 'adding up' the general solution of the equation* A **u** = **b** *and the general solution of the equation* A **u** = **c***.*

(d) Suppose $\mathbf{b} \in \mathcal{C}(A)$, and $\beta \in \mathbb{F}$. Then the equality $L_A^{-1}(\{\beta \mathbf{b}\}) = \beta L_A^{-1}(\{\mathbf{b}\})$ holds. This equality is what we mean by the sentence below:

The general solution of the linear equation A **u** = β **b** *is the same as 'multiplying' the general solution of the equation* A **u** = **b** *by the scalar* β *.*

21. **Example on quotient spaces: Vector space of indefinite integrals.**

Let *J* be an open interval in R. Recall that $C(J)$ is the set of all real-valued functions with domain *J* which is continuous on *J*. Recall that $C^1(J)$ is the set of all real-valued functions with domain *J* which is continuously differentiable on *J*.

Define the function $D: C^1(J) \longrightarrow C(J)$ by $D(h) = h'$ for any $h \in C^1(J)$.

Note that D is a surjective and non-injective linear transformation. (Why?)

Note that the kernel $\mathcal{N}(D)$ of the linear transformation *D* is the vector space of all constant real-valued functions on *J*, which is a subspace of $C^1(J)$. (This is a consequence of the Mean-Value Theorem.)

The vector space $C^1(J)/N(D)$ is isomorphic to $C(J)$ as vector spaces over \mathbb{R} .

(a) Suppose $h \in C^1(J)$ and $u \in C(J)$, and suppose $h' = u$. Then $D^{-1}(\{u\}) = D^{-1}(\{D(h)\}) = h + \mathcal{N}(D) = \{g \in C^1(J) : g = h + C \text{ for some } C \in \mathcal{N}(D)\}.$ Recall that *D−*¹ (*{u}*) is the set of all primitives of the continuous function *u* on the interval *J*. It is the indefinite integral $\int u(x)dx$.

So the set equality $D^{-1}(\{u\}) = h + \mathcal{N}(D)$ is what we mean by the 'formula'

$$
\int u(x)dx = h(x) + C
$$
, where C is an arbitrary constant

(b) Suppose $u, v \in C(J)$ and $\alpha, \beta \in \mathbb{R}$. Then the equality $D^{-1}(\{\alpha u + \beta v\}) = \alpha D^{-1}(\{u\}) + \beta D^{-1}(\{v\})$ holds. It is what we mean by the 'formula'

$$
\int (\alpha u(x) + \beta v(x))dx = \alpha \int u(x)dx + \beta \int v(x)dx.
$$