- 0. (a) The handout is a continuation of the Handouts Linear algebra beyond systems of linear equations and manipulation of matrices, Spanning sets, linearly independent sets, and bases.
 - (b) The justification for the theoretical results and the claims in the concrete examples are left as exercises in the use of sets, functions and equivalence relations in *set language*.

1. Theorem (1).

Let V, W be vector spaces over a field \mathbb{F} , and $\varphi: V \longrightarrow W$ be a linear transformation over \mathbb{F} .

The statements below hold:

- (a) Suppose U is a subspace of V over \mathbb{F} . Then $\varphi(U)$ is a subspace of W over \mathbb{F} .
- (b) Let U_1, U_2 be subspaces of V over \mathbb{F} . Suppose U_1 is a subspace of U_2 over \mathbb{F} . Then $\varphi(U_1)$ is a subspace of $\varphi(U_2)$ over \mathbb{F} .
- (c) Suppose U_1, U_2 are subspaces of V over IF. Then $\varphi(U_1 + U_2) = \varphi(U_1) + \varphi(U_2)$ as vector spaces over IF.
- (d) Suppose U_1, U_2 are subspaces of V over \mathbb{F} . Then $\varphi(U_1 \cap U_2)$ is a subspace of $\varphi(U_1) \cap \varphi(U_2)$ over \mathbb{F} .

2. Theorem (2).

Let V, W be vector spaces over a field \mathbb{F} , and $\varphi: V \longrightarrow W$ be a linear transformation over \mathbb{F} .

The statements below hold:

- (a) Suppose U is a subspace of W over \mathbb{F} . Then $\varphi^{-1}(U)$ is a subspace of V over \mathbb{F} .
- (b) Let U_1, U_2 be subspaces of W over \mathbb{F} . Suppose U_1 is a subspace of U_2 over \mathbb{F} . Then $\varphi^{-1}(U_1)$ is a subspace of $\varphi^{-1}(U_2)$ over \mathbb{F} .
- (c) Suppose U_1, U_2 are subspaces of W over IF. Then $\varphi^{-1}(U_1+U_2) = \varphi^{-1}(U_1) + \varphi^{-1}(U_2)$ as vector spaces over IF.
- (d) Suppose U_1, U_2 are subspaces of W over \mathbb{F} . Then $\varphi^{-1}(U_1 \cap U_2) = \varphi^{-1}(U_1) \cap \varphi^{-1}(U_2)$ as vector spaces over \mathbb{F} .

3. Definition.

Let V, W be vector spaces over a field \mathbb{F} , and $\varphi: V \longrightarrow W$ be a linear transformation over \mathbb{F} .

The subspace $\varphi^{-1}(\{\mathbf{0}\})$ of V is called the **kernel of the linear transformation** φ . It is denoted by $\mathcal{N}(\varphi)$.

Remark on terminology. The kernel of T is also called the **null space of** φ .

4. Examples on null spaces.

Refer to the Handout Linear algebra beyond systems of linear equations and manipulation of matrices. Given that V, W are vector spaces over a field \mathbb{F} , and $\varphi: V \longrightarrow W$ is a linear transformation over \mathbb{F} , the null space of φ is the solution set of the homogeneous linear equation

$$\varphi(\mathbf{u}) = \mathbf{0}$$

with unknown \mathbf{u} in V.

(a) Let \mathbb{F} be a field. Suppose that A is an $(m \times n)$ -matrix with entries in \mathbb{F} .

Recall the null space $\mathcal{N}(A)$ of the matrix A is given by $\mathcal{N}(A) = \{ \mathbf{x} \in \mathbb{F}^n : A\mathbf{x} = \mathbf{0} \}.$

Recall that the linear transformation defined by matrix multiplication from the left by A is the linear transformation $L_A : \mathbb{F}^n \longrightarrow \mathbb{F}^m$ given by $L_A(\mathbf{x}) = A\mathbf{x}$ for any $\mathbf{x} \in \mathbb{F}^n$.

The kernel $\mathcal{N}(L_A)$ of L_A is equal to the null space $\mathcal{N}(A)$ of the matrix A.

- (b) i. Let $c \in \mathbb{R}$. Define the function $E_c : \mathbb{R}[x] \longrightarrow \mathbb{R}$ by $E_c(f) = f(c)$ for any $f(x) \in \mathbb{R}[x]$. E_c is a linear transformation from $\mathbb{R}[x]$ to \mathbb{R} . The kernel of E_c is $\{f(x) \in \mathbb{R}[x] : f(c) = 0\}$. According to Factor Theorem, this is $\{f(x) \in \mathbb{R}[x] : f(x) \text{ is divisible by } x - c\}$.
 - ii. Define the function $T : \mathbb{R}[x] \longrightarrow \mathbb{R}[x]$ by (T(f))(x) = xf(x) for any $f(x) \in \mathbb{R}[x]$. T is a linear transformation from $\mathbb{R}[x]$ to $\mathbb{R}[x]$. The kernel of T is $\{0\}$. (Here 0 stands for the zero polynomial.)

- iii. Define the function $S : \mathbb{R}[x] \longrightarrow \mathbb{R}[x]$ by (S(f))(x) = f(x) f(0) for any $f(x) \in \mathbb{R}[x]$. S is a linear transformation from $\mathbb{R}[x]$ to $\mathbb{R}[x]$. The kernel of S is $\{f(x) \in \mathbb{R}[x] : f(x) \text{ is a constant polynomial}\}.$
- (c) Let J be an open interval in \mathbb{R} .
 - i. Let $c \in J$. Define the function $D_c : C^1(J) \longrightarrow \mathbb{R}$ by $D_c(\varphi) = \varphi'(c)$ for any $\varphi \in C^1(J)$. D_c is a linear transformation from $C^1(J)$ to \mathbb{R} . The kernel of D_c is the set of all real-valued functions on J which are continuously differentiable on Jand whose first derivatives vanish at the point c.
 - ii. Define the function D : C¹(J) → C(J) by (D(φ))(x) = φ'(x) for any φ ∈ C¹(J) for any x ∈ J.
 D is a linear transformation from C¹(J) to C(J).
 The kernel of D is the set of all constant real-valued functions on J. (To verify this claim, you need to apply the Mean-Value Theorem.)
- (d) Let J be an interval in \mathbb{R} .
 - i. Let $c \in J$.

Define the function $I_c: C(J) \longrightarrow C^1(J)$ by $I_c(\varphi)(x) = \int_c^x \varphi$ for any $\varphi \in C(J)$ for any $x \in J$.

 I_c is a linear transformation from C(J) to $C^1(J)$.

The kernel of I_c is the singleton whose only element is the zero function on J. (To verify this claim, you need to apply the Fundamental Theorem of the Calculus.)

ii. Let $c \in J$. Let $f \in C(J)$.

Define the function
$$T: C(J) \longrightarrow C^1(J)$$
 by $T(\varphi)(x) = \int_c^x \varphi \cdot f$ for any $\varphi \in C(J)$ for any $x \in J$.

T is a linear transformation from C(J) to $C^{1}(J)$.

The kernel of T is the set of all real-valued functions defined on J which are continuous on J and which vanish on the set $\{t \in J : f(t) \neq 0\}$.

5. Theorem (3).

Let V, W be vector spaces over a field \mathbb{F} , and $\varphi: V \longrightarrow W$ be a linear transformation over \mathbb{F} .

The statements below are logically equivalent:

- (a) φ is injective.
- (b) For any $\mathbf{x} \in V$, if $\varphi(\mathbf{x}) = \mathbf{0}$ then $\mathbf{x} = \mathbf{0}$.
- (c) $\mathcal{N}(\varphi) = \{\mathbf{0}\}.$

Remark. Theorem (3) generalizes the result about matrices and vectors below:

Suppose A is an $(m \times n)$ -matrix with entries in a field \mathbb{F} . Then L_A is injective iff $\mathcal{N}(A) = \{\mathbf{0}\}.$

6. Theorem (4).

Let V, W be vector spaces over a field \mathbb{F} , and $\varphi: V \longrightarrow W$ be a linear transformation over \mathbb{F} .

- (a) Let x, u₁, u₂, ..., u_k ∈ V.
 Suppose x is a linear combination of u₁, u₂, ..., u_k over F.
 Then φ(x) is a linear combination of φ(u₁), φ(u₂), ..., φ(u_k) over F.
- (b) Suppose S is a subset of V.
 Then φ(Span_F(S)) = Span_F(φ(S)).
- (c) Let S be a subset of V.
 Suppose S is a spanning set for V over IF.
 Then φ(S) is a spanning set for φ(V).

Remark. Theorem (4) generalizes the result about matrices and vectors below:

Suppose A is an $(m \times n)$ -matrix with entries in a field \mathbb{F} . (Recall that $L_A : \mathbb{F}^n \longrightarrow \mathbb{F}^m$ is the function defined by $L_A(\mathbf{x}) = A\mathbf{x}$ for any $\mathbf{x} \in \mathbb{F}^n$.) The statements below hold:

- (a) Let x, u₁, u₂, ..., u_k ∈ Fⁿ.
 Suppose x is a linear combination of u₁, u₂, ..., u_k.
 Then Ax is a linear combination of Au₁, Au₂, ..., Au_k.
- (b) Suppose $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k \in \mathbb{F}^n$, and $U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_k \end{bmatrix}$. Then $L_A(\mathcal{C}(U)) = \mathcal{C}(AU)$.
- (c) Let V be a subspace of \mathbb{F}^n , and $\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k \in \mathbb{F}^n$. Suppose $\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_k\}$ is a spanning set for V over \mathbb{F} . Then $\{A\mathbf{u}_1, A\mathbf{u}_2, \cdots, A\mathbf{u}_k\}$ is a spanning set for $L_A(V)$.
- (d) $L_A(\mathbb{F}^n) = \mathcal{C}(A).$

7. Theorem (5).

Let V, W be vector spaces over a field \mathbb{F} , and $\varphi: V \longrightarrow W$ be a linear transformation over \mathbb{F} .

- (a) Let S be a subset of V. Suppose S is linearly dependent over \mathbb{F} . Then $\varphi(S)$ is linear dependent over \mathbb{F} .
- (b) Let T be a subset of V. Suppose T is linearly independent over \mathbb{F} . Further suppose φ is injective. Then $\varphi(T)$ is linear independent over \mathbb{F} .

Remark. Theorem (5) generalizes the result about matrices and vectors below:

Suppose A is an $(m \times n)$ -matrix with entries in a field \mathbb{F} .

- (a) Let $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$ be pairwise distinct vectors in \mathbb{F}^n . Suppose $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$ are linearly dependent. Then $A\mathbf{u}_1, A\mathbf{u}_2, \dots, A\mathbf{u}_k$ are linearly dependent vectors in \mathbb{F}^m .
- (b) Let $\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_k$ be pairwise distinct vectors in \mathbb{F}^n . Suppose $\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_k$ are linearly independent. Further suppose $\mathcal{N}(A) = \{\mathbf{0}\}$.

Then $A\mathbf{w}_1, A\mathbf{w}_2, \cdots, A\mathbf{w}_k$ are linearly independent vectors in \mathbb{F}^m .

8. Theorem (6).

Let V, W be vector spaces over a field \mathbb{F} , and $\varphi: V \longrightarrow W$ be a linear transformation over \mathbb{F} .

Let B be a base for V over ${\mathbb F}.$ Further suppose φ is injective.

Then $\varphi(B)$ is a base for $\varphi(V)$ over \mathbb{F} .

Corollary to Theorem (6).

Let V, W be vector spaces over a field \mathbb{F} , and $\varphi : V \longrightarrow W$ be a linear transformation of \mathbb{F} . Suppose φ is injective. Then, for any subspace U of V, for any subset C of V, C is a base for U over \mathbb{F} iff $\varphi(C)$ is a base for $\varphi(U)$ over \mathbb{F} . In particular, for any subset B of V, B is a base for V over \mathbb{F} iff $\varphi(B)$ is a base for $\varphi(V)$ over \mathbb{F} .

9. Theorem (7).

Let V, W be vector spaces over a field \mathbb{F} , and $\varphi: V \longrightarrow W$ be a linear transformation over \mathbb{F} .

Let B be a base for $\mathcal{N}(\varphi)$ over \mathbb{F} , and C be a base for V over \mathbb{F} . Suppose $B \subset C$.

Then $\varphi(C \setminus B)$ is a base for $\varphi(V)$ over \mathbb{F} .

10. Theorem (8).

Let V, W be vector spaces over a field \mathbb{F} , and $\varphi : V \longrightarrow W$ be a linear transformation over \mathbb{F} . Suppose V is finite-dimensional over \mathbb{F} . The statements below hold:

- (a) $\mathcal{N}(\varphi)$ is a finite-dimensional vector space over \mathbb{F} , and $\dim_{\mathbb{F}}(\mathcal{N}(\varphi)) \leq \dim_{\mathbb{F}}(V)$. Equality holds iff $\varphi(\mathbf{x}) = \mathbf{0}$ for any $\mathbf{x} \in V$.
- (b) Write k = dim_𝓕(V) dim_𝓕(N(φ)). Suppose B is a base for N(φ) over 𝓕. Then there exist some u₁, u₂, ..., u_k ∈ V\N(φ) such that u₁, u₂, ..., u_k are pairwise distinct, φ(u₁), φ(u₂), ..., φ(u_k) are pairwise distinct, B ∪ {u₁, u₂, ..., u_k} is a base for V over 𝓕, and {φ(u₁), φ(u₂), ..., φ(u_k)} is a base for φ(V) over 𝓕.

(c) $\dim_{\mathbb{F}}(V) = \dim_{\mathbb{F}}(\mathcal{N}(\varphi)) + \dim_{\mathbb{F}}(\varphi(V)).$

Remark on terminology. The dimension of (the finite-dimensional vector space) $\varphi(V)$ over \mathbb{F} is called the rank of the linear transformation φ .

Remark. The equality described in Statement (c) is known as the **dimension formula** (for a linear transformation whose domain is finite-dimensional). It generalizes the result about matrices and vectors below:

Suppose A is an $(m \times n)$ -matrix with entries in a field \mathbb{F} . Then $n = \dim_{\mathbb{F}}(\mathcal{N}(A)) + \dim_{\mathbb{F}}(\mathcal{C}(A))$.

11. Definition.

Let V, W be vector spaces over a field \mathbb{F} .

- (a) Let $\varphi : V \longrightarrow W$ be a linear transformation of \mathbb{F} . φ is called a **linear isomorphism** if φ is bijective.
- (b) V is said to be **isomorphic** to W as vector spaces over \mathbb{F} if there is some linear isomorphism from V to W over \mathbb{F} .

Theorem (9).

Let V, W be vector spaces over a field \mathbb{F} , and $\varphi: V \longrightarrow W$ be linear transformation over \mathbb{F} .

Suppose φ is a linear isomorphism over \mathbb{F} . Then the inverse function $\varphi^{-1}: W \longrightarrow V$ of the bijective function φ a linear isomorphism over \mathbb{F} .

12. Theorem (10).

Let V, W be vector spaces over a field \mathbb{F} , and $\varphi: V \longrightarrow W$ be linear transformation over \mathbb{F} .

The statements below are logically equivalent:

- (a) φ is a linear isomorphism over \mathbb{F} .
- (b) For any subset B of V, if B is a base for V over \mathbb{F} then $\varphi(B)$ is a base for W over \mathbb{F} .
- (c) For any subset C over W, if C is a base for W over \mathbb{F} then $\varphi^{-1}(C)$ is a base for V over \mathbb{F} .

13. Theorem (11).

Let V, W be vector spaces over a field \mathbb{F} .

Let B be a base for V over \mathbb{F} .

For any function $f: B \longrightarrow W$, there exists some unique linear transformation $\varphi: V \longrightarrow W$ such that $\varphi|_B = f$ as functions.

Remark on terminology. The function φ is called the linear transformation determined by **linear extension** from f.

14. Theorem (12).

Let V, W be vector spaces over a field \mathbb{F} .

The statements below are logically equivalent:

- (a) V is isomorphic to W over \mathbb{F} .
- (b) For any subset B of V, if B is a base for V over \mathbb{F} , then there exists some injective function $f : B \longrightarrow W$ such that f(B) is a base for W over \mathbb{F} .
- (c) There exist some subset C of V, some subset D of W, and some bijective function $g: C \longrightarrow D$ such that C is a base for V over \mathbb{F} and D is a base for W over \mathbb{F} .

Remark. We tacitly assume that every vector space over a field has a base over that field.

15. Theorem (13).

Let V be a vector space over a field \mathbb{F} . Suppose V is finite- dimensional over \mathbb{F} . Write $n = \dim_{\mathbb{F}}(V)$.

Then the statements below hold:

(a) Let W be a vector space over \mathbb{F} . Suppose V is isomorphic to W as vector spaces over \mathbb{F} . Then W is finite-dimensional, and $\dim_{\mathbb{F}}(W) = n$.

- (b) V is isomorphic to \mathbb{F}^n as vector spaces over \mathbb{F} .
- (c) Let W be a finite-dimensional vector space over \mathbb{F} . Suppose $\dim_{\mathbb{F}}(W) = n$. Then V is isomorphic to W as vector spaces over \mathbb{F} .

16. Examples on linear isomorphisms and isomorphic vector spaces.

- (a) Let \mathbb{F} be a field. Suppose that A is an $(n \times n)$ -square matrix with entries in \mathbb{F} . L_A is a linear isomorphism from \mathbb{F}^n to \mathbb{F}_n iff A is non-singular.
 - Its inverse function L_A^{-1} is the linear transformation $L_{A^{-1}}$.
- (b) Let \mathbb{F} be a field.

Recall that $Mat_{m \times n}(\mathbb{F})$ is a vector space over \mathbb{F} , of dimension mn.

A base for $\mathsf{Mat}_{m \times n}(\mathbb{F})$ over \mathbb{F} is given by $\{E_{i,j}^{m,n} \mid i \in [\![1,m]\!]$ and $j \in [\![1,n]\!]\}$, in which each $E_{i,j}^{m,n}$ is the $(m \times n)$ -matrix with entries in \mathbb{F} whose (i,j)-th entry is 1 and whose other entries are all 0.

 $Mat_{m \times n}(\mathbb{F})$ is isomorphic to \mathbb{F}^{mn} over \mathbb{F} as vector space over \mathbb{F} .

Recall that a base for ${\sf I\!F}^{mn}$ over ${\sf I\!F}$ is given by $\{{\bf e}_k^{(mn)} \mid k \in [\![1,mn]\!]\}.$

A bijective function f from $\{E_{i,j}^{m,n} \mid i \in [\![1,m]\!]$ and $j \in [\![1,n]\!]\}$ to $\{\mathbf{e}_k^{(mn)} \mid k \in [\![1,mn]\!]\}$ is given by $f(E_{i,j}^{m,n}) = \mathbf{e}_{(i-1)n+j}^{(mn)}$ for any $i \in [\![1,m]\!]$, $j \in [\![1,n]\!]$.

A linear isomorphism from $Mat_{m \times n}(\mathbb{F})$ to \mathbb{F}^{mn} over \mathbb{F} is obtained by extending f by linearity. When m = 2 and n = 3, the bijective function f is explicitly given by

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \mapsto \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \mapsto \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \mapsto \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \mapsto \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \mapsto \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \mapsto \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \mapsto \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix},$$

(c) Recall that $Map(\mathbb{N}, \mathbb{R})$ is the set of all infinite sequences with real entries. It is a vector space over \mathbb{R} . An infinite sequence $\{a_n\}_{n=0}^{\infty}$ in the reals is said to be terminating if there exists some $N \in \mathbb{N}$ such that for any $n \in \mathbb{N}$, if n > N then $a_n = 0$.

We denote by $Map_{00}(N, \mathbb{R})$ the set of all terminating infinite sequences in \mathbb{R} .

 $Map_{00}(N, \mathbb{R})$ is a subspace of $Map(N, \mathbb{R})$ over \mathbb{R} .

A base for $\mathsf{Map}_{00}(\mathsf{N}, \mathsf{IR})$ is given by $D = \{\delta_j \mid j \in \mathsf{N}\}$. (Here for each $j \in \mathsf{N}, \, \delta_j : \mathsf{N} \longrightarrow \mathsf{IR}$ is given by $\delta_j(x) = \begin{cases} 1 & \text{if } x = j \\ & . \end{cases}$

$$\delta_j(x) = \begin{cases} 1 & \text{if } x \neq j \\ 0 & \text{if } x \neq j \end{cases}$$

Recall that $\mathbb{R}[x]$ is the vector space of all polynomials with real coefficients.

A base for $\mathbb{R}[x]$ over \mathbb{R} is given by $E = \{e_j(x) \mid j \in \mathbb{N}\}$. (Here, for any $j \in \mathbb{N}$, $e_j(x)$ is the polynomial x^j .) A bijective function $f: D \longrightarrow E$ is given by $f(\delta_j) = e_j(x)$ for any $j \in \mathbb{N}$.

 $Map_{00}(N, \mathbb{R})$ is isomorphic to $\mathbb{R}[x]$ as vector spaces over \mathbb{R} .

An linear isomorphism from $\mathsf{Map}_{00}(\mathsf{N}, \mathbb{R})$ to $\mathbb{R}[x]$ over \mathbb{R} is obtained by extending f by linearity.

(d) Let J be an open interval in \mathbb{R} .

Recall that C(J) is the vector space of all real-valued functions of one real variable with domain J which are continuous on J.

Also recall that $C^{1}(J)$ is the vector space of all real-valued functions of one real variable with domain J which are continuously differentiable on J.

Differentiation defines the linear transformation D from $C^1(J)$ to C(J), given explicitly by $(D(\varphi))(x) = \varphi'(x)$ for any $\varphi \in C^1(J)$ for any $x \in J$.

Let
$$a \in J$$
.

Recall that the function $I_a: C(J) \longrightarrow C^1(J)$ defined by $I_a(\varphi)(x) = \int_a^x \psi$ for any $\psi \in C(J)$ for any $x \in J$ is a linear transformation from C(J) to $C^1(J)$.

Define $C^1(J; a) = \{\varphi \in C^1(J) : \varphi(a) = 0\}.$

 $C^1(J; a)$ is a vector subspace of $C^1(J)$ over \mathbb{R} .

It happens that $I_a(C(J)) = C^1(J; a)$. (Why?)

The restriction of D to $C^1(J; a)$ defines a linear transformation from $C^1(J; a)$ to C(J). Denote this linear transformation by Δ_a . Hence by definition, $\Delta_a(\varphi) = D(\varphi)$ for any $\varphi \in C^1(J; a)$.

Also, for any $\varphi \in C^1(J; a)$, $I_a(D(\varphi)) = \varphi$.

Moreover, for any $\psi \in C(J)$, $D(I_a(\psi)) = \psi$.

It follows that Δ_a is a linear isomorphism from $C^1(J; a)$ to C(J), with its inverse function Δ_a given explicitly by $\Delta_a^{-1}(\psi) = I_a(\psi)$ for any $\psi \in C(J)$.

17. Theorem (14).

Let V be a vector space over a field \mathbb{F} , and U be a subspace of V over \mathbb{F} .

Define $E(V, U) = \{(\mathbf{x}, \mathbf{y}) \mid \mathbf{x} - \mathbf{y} \in U\}$, and R(V, U) = (V, V, E(V, U)).

Then R(V, U) is an equivalence relation in V.

Remarks on terminologies.

- (a) The equivalence relation R(V, U) is called the **equivalence relation in** V induced by the subspace U over \mathbb{F} .
- (b) The quotient in V by R(V,U) is denoted by V/U, and is called the **quotient space of the vector space** V by the subspace U over \mathbb{F} . (We are going to define a 'natural' vector space structure on the set V/U.)
- (c) For any $\mathbf{x} \in V$, the equivalence class of \mathbf{x} under R(V, U) is denoted by $\mathbf{x} + U$. By definition, $\mathbf{x} + U = \{\mathbf{y} \in V : \mathbf{y} = \mathbf{x} + \mathbf{z} \text{ for some } \mathbf{z} \in U\}$. (This set equality needs to be verified.)
- (d) The **quotient mapping from** V to V/U refers to the quotient mapping from V to V/U induced by R(V,U), given by $\mathbf{x} \mapsto \mathbf{x} + U$ for any $\mathbf{x} \in V$. It is denoted by $q_{v,U}$.

18. Theorem (15).

Let V be a vector space over a field \mathbb{F} , and U be a subspace of V over \mathbb{F} .

(a) Define
$$G_{\Sigma} = \left\{ ((J,K),L) \middle| \begin{array}{l} J,K,L \in V/U \text{ and} \\ \text{there exists some } \mathbf{x}, \mathbf{y} \in V \text{ such that} \\ J = \mathbf{x} + U, \ K = \mathbf{y} + U, \text{ and } L = (\mathbf{x} + \mathbf{y}) + U \end{array} \right\}, \text{ and } \Sigma = ((V/U)^2, V/U, G_{\Sigma}).$$

Then Σ is a function from $(V/U)^2$ to V/U, with graph G_{Σ} . Moreover, for any $\mathbf{x}, \mathbf{y} \in V$, $\Sigma(\mathbf{x} + U, \mathbf{y} + U) = (\mathbf{x} + \mathbf{y}) + U$.

(b) Define $G_{\Pi} = \left\{ ((\alpha, J), K) \middle| \begin{array}{l} \alpha \in \mathbb{F} \text{ and } J, K \in V/U \text{ and} \\ \text{there exists some } \mathbf{x} \in V \text{ such that} \\ J = \mathbf{x} + U \text{ and } K = (\alpha \mathbf{x}) + U \end{array} \right\}, and \Pi = (\mathbb{F} \times (V/U), V/U, G_{\Pi}).$

Then Π is a function from $\mathbb{F} \times (V/U)$ to V/U, with graph G_{Π} .

Moreover, for any $\alpha \in \mathbb{F}$, for any $\mathbf{x} \in V$, $\Pi(\alpha, \mathbf{x} + U) = (\alpha \mathbf{x}) + U$.

- (c) V/U is a vector space over \mathbb{F} with vector addition Σ and scalar multiplication Π .
- (d) The quotient mapping $q_{V,U}: V \longrightarrow V/U$ is a surjective linear transformation, and $\mathcal{N}(q_{V,U}) = U$.

Remarks on terminologies and notations.

(a) We call Σ the (vector) addition in (the quotient space) V/U. (Note that Σ is a closed binary operation on V/U.)

From now on we agree to write $\Sigma(J, K)$ as J + K for any $J, K \in V/U$. Hence for any $\mathbf{x}, \mathbf{y} \in V$, we have $(\mathbf{x} + U) + (\mathbf{y} + U) = (\mathbf{x} + \mathbf{y}) + U$.

(b) We call Π the scalar multiplication in (the quotient space) V/U over (the field) \mathbb{F} . From now on we agree to write $\Pi(\alpha, J)$ as αJ for any $\alpha \in \mathbb{F}$, for any $J \in V/U$. Hence for any $\alpha \in \mathbb{F}$, for any $\mathbf{x} \in V$, we have $\alpha(\mathbf{x} + U) = (\alpha \mathbf{x}) + U$.

19. Theorem (16).

Let V, W be vector spaces over a field \mathbb{F} , and $\varphi: V \longrightarrow W$ be a linear transformation. The statements below hold:

- (a) For any $\mathbf{x} \in V$, $\mathbf{x} + \mathcal{N}(\varphi) = \varphi^{-1}(\{\varphi(\mathbf{x})\})$.
- (b) For any $\alpha, \beta \in \mathbb{F}$, for any $\mathbf{y}, \mathbf{z} \in \varphi(V), \varphi^{-1}(\alpha \mathbf{y} + \beta \mathbf{z}) = \alpha \varphi^{-1}(\{\mathbf{y}\}) + \beta \varphi^{-1}(\{\mathbf{z}\}).$
- (c) V/N(φ) is isomorphic to φ(V) as vector spaces over F and a linear isomorphism Υ_φ from φ(V) to V/N(φ) is given by Υ_φ : y → φ⁻¹({y}) for any y ∈ N(φ). The equality q_{V,N(φ)} = Υ_φ ∘ φ holds.

20. Example on quotient vector spaces: Vector space of solution sets for systems of linear equations with the same coefficient matrix.

Let \mathbb{F} be a field. Suppose that A is an $(m \times n)$ -matrix with entries in a field \mathbb{F} .

Recall that the linear transformation $L_A : \mathbb{F}^n \longrightarrow \mathbb{F}^m$ is given by $L_A(\mathbf{x}) = A\mathbf{x}$ for any $\mathbf{x} \in \mathbb{F}^n$.

Recall that the kernel of L_A is the null space $\mathcal{N}(A)$ of the matrix A, and is the solution space of the homogeneous equation $A\mathbf{u} = \mathbf{0}$ with unknown $\mathbf{u} \in \mathbb{F}^n$.

Also recall that $L_A(\mathbb{F}^n) = \mathcal{C}(A)$.

(a) Suppose $\mathbf{p} \in \mathbb{F}^n$ and $\mathbf{b} \in \mathcal{C}(A)$, and suppose ' $\mathbf{u} = \mathbf{p}$ ' is a solution of the linear equation $A\mathbf{u} = \mathbf{b}$ with unknown \mathbf{u} in \mathbb{F}^n .

Then $L_A^{-1}({\mathbf{b}}) = L_A^{-1}({L_A(\mathbf{p})}) = \mathbf{p} + \mathcal{N}(A) = \mathbf{x} + \mathcal{N}(A) = {\mathbf{y} \in \mathbf{F}^n : \mathbf{y} = \mathbf{p} + \mathbf{h} \text{ for some } \mathbf{h} \in \mathcal{N}(A)}.$

Recall that $L_A^{-1}({\mathbf{b}})$ is the solution set of the linear equation $A\mathbf{u} = \mathbf{b}$ with unknown \mathbf{u} in \mathbb{F}^n .

So the set equality $L_A^{-1}({\mathbf{b}}) = \mathbf{p} + \mathcal{N}(A)$ is what we mean by the sentence below:

The general solution of the linear equation $A\mathbf{u} = \mathbf{b}$ is given by (any) one particular solution, say ' $\mathbf{u} = \mathbf{p}$ ', of the equation $A\mathbf{u} = \mathbf{b}$ 'added to' the solution space of the homogeneous equation $A\mathbf{u} = \mathbf{0}$.

(b) The vector space $\mathbb{F}^n/\mathcal{N}(A)$ is isomorphic to $\mathcal{C}(A)$ as vector spaces over \mathbb{F} ,

A linear isomorphism Υ_{L_A} from $\mathcal{C}(A)$ to $\mathbb{F}^n/\mathcal{N}(A)$ is given by $\Upsilon_{L_A} : \mathbf{b} \longmapsto L_A^{-1}(\{\mathbf{b}\})$ for any $\mathbf{b} \in \mathcal{C}(A)$. This tells us that the set of the non-empty solution sets of the linear equations with the same coefficient matrix A but with various vectors of constant are provided, via Υ_{L_A} , with a natural linear structure, namely, that of $\mathbb{F}^n/\mathcal{N}(A)$.

(c) Suppose $\mathbf{b}, \mathbf{c} \in \mathcal{C}(A)$. Then the equality $L_A^{-1}(\{\mathbf{b} + \mathbf{c}\}) = L_A^{-1}(\{\mathbf{b}\}) + L_A^{-1}(\{\mathbf{c}\})$ holds. This equality is what we mean by the sentence below:

The general solution of the linear equation $A\mathbf{u} = \mathbf{b} + \mathbf{b}$ is the same as 'adding up' the general solution of the equation $A\mathbf{u} = \mathbf{b}$ and the general solution of the equation $A\mathbf{u} = \mathbf{c}$.

(d) Suppose $\mathbf{b} \in \mathcal{C}(A)$, and $\beta \in \mathbb{F}$. Then the equality $L_A^{-1}(\{\beta \mathbf{b}\}) = \beta L_A^{-1}(\{\mathbf{b}\})$ holds. This equality is what we mean by the sentence below:

The general solution of the linear equation $A\mathbf{u} = \beta \mathbf{b}$ is the same as 'multiplying' the general solution of the equation $A\mathbf{u} = \mathbf{b}$ by the scalar β .

21. Example on quotient spaces: Vector space of indefinite integrals.

Let J be an open interval in \mathbb{R} . Recall that C(J) is the set of all real-valued functions with domain J which is continuous on J. Recall that $C^1(J)$ is the set of all real-valued functions with domain J which is continuously differentiable on J.

Define the function $D: C^1(J) \longrightarrow C(J)$ by D(h) = h' for any $h \in C^1(J)$.

Note that D is a surjective and non-injective linear transformation. (Why?)

Note that the kernel $\mathcal{N}(D)$ of the linear transformation D is the vector space of all constant real-valued functions on J, which is a subspace of $C^1(J)$. (This is a consequence of the Mean-Value Theorem.)

The vector space $C^1(J)/\mathcal{N}(D)$ is isomorphic to C(J) as vector spaces over \mathbb{R} .

(a) Suppose h ∈ C¹(J) and u ∈ C(J), and suppose h' = u. Then D⁻¹({u}) = D⁻¹({D(h)}) = h + N(D) = {g ∈ C¹(J) : g = h + C for some C ∈ N(D)}. Recall that D⁻¹({u}) is the set of all primitives of the continuous function u on the interval J. It is the indefinite integral ∫ u(x)dx.

So the set equality $D^{-1}({u}) = h + \mathcal{N}(D)$ is what we mean by the 'formula'

$$\int u(x)dx = h(x) + C$$
, where C is an arbitrary constant

(b) Suppose $u, v \in C(J)$ and $\alpha, \beta \in \mathbb{R}$. Then the equality $D^{-1}(\{\alpha u + \beta v\}) = \alpha D^{-1}(\{u\}) + \beta D^{-1}(\{v\})$ holds. It is what we mean by the 'formula'

$$\int (\alpha u(x) + \beta v(x)) dx = \alpha \int u(x) dx + \beta \int v(x) dx.$$