
MATH1050 Integers modulo n

1. We assume n ∈ N\{0, 1} throughout this Handout.

Definitions.

(a) Let x, y ∈ Z. x is said to be congruent to y modulo n if x− y is divisible by n. We write x ≡ y(mod n).

(b) Define En = {(x, y) | x, y ∈ Z and x ≡ y(mod n)}, and Rn = (Z,Z, En). We call Rn the congruence modulo
n relation on Z.

Remark. Rn is an equivalence relation in Z.

Definitions.

(a) For any x ∈ Z, define [x] = {y ∈ Z : (x, y) ∈ En}. The set [x] is called the equivalence class of x under the
equivalence relation Rn.

(b) Define Zn = {[x] | x ∈ Z}. Zn is called as the quotient of the set Z by equivalence relation Rn.

Remark. This ‘school-and-classes’ analogy’ is intended to help us see the intuitive idea about the definitions above.

Read:

• ‘integer x’ as ‘student x’,

• ‘the set of all integers Z’ as ‘the school Z (whose elements are exactly all the students of the school)’,

• ‘(x, y) ∈ En’ (or equivalently ‘x ≡ y(mod n)’) as ‘student x is in the same class as student y’.

Now, for each student x, the set [x] is the set of all classmates of x in the school. We expect the set Zn to be
the set of all classes in the school, (each class being a set of students).

2. Lemma (1).

Let x, y ∈ Z. The following statements are equivalent:

(a) x− y = qn for some q ∈ Z.

(b) x ≡ y(mod n).

(c) (x, y) ∈ En.

(d) y ∈ [x].

(e) x ∈ [y].

(f) [x] = [y].

Proof. Exercise. (This is nothing but a tedious game of words.)

Remark. How to interpret Lemma (1) in terms of the ‘school-and-classes’ analogy’?

Recall that ‘(x, y) ∈ En’ is read as ‘student x is in the same class as student y’.

Now:

• ‘y ∈ [x]’ reads:

‘student y is an element of the set of all classmates of student x’.

• ‘x ∈ [y]’ reads:

‘student x is an element of the set of all classmates of student y’.

• ‘[x] = [y]’ reads:

‘the set of all classmates of student x is the same as the set of the set of all classmates of student y’.

Each of these is the same as ‘x is in the same class as y’.

Lemma (2).

For any x ∈ Z, there exists some unique r ∈ J0, n− 1K such that [x] = [r].

Proof.

Let x ∈ Z.

• [Existence argument.] By the Division Algorithm, there exist some (unique) q, r ∈ Z such that x = qn+ r and
0 ≤ r < n. By definition, r ∈ J0, n− 1K. Also x− r = qn for this q ∈ Z. Then by Lemma (1), we have [x] = [r].

• [Uniqueness argument?] Let s, t ∈ J0, n − 1K. Suppose [x] = [s] and [x] = [t]. Then [s] = [x] = [t]. By Lemma
(1), s − t is divisible by n. Since s, t ∈ J0, n − 1K, we have 0 ≤ |s − t| ≤ n − 1 < n. Then |s − t| = 0. (Why?)
Hence s = t.

Remark. How to interpret Lemma (2) in terms of the ‘school-and-classes’ analogy’?

No matter which student in the school Z is picked out, he/she will have exactly one classmate amongst
0, 1, · · · , n− 1.
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3. Theorem (3).

The following statements hold:

(0) Zn = {[0], [1], · · · , [n− 2], [n− 1]}.

(1) For any u ∈ Zn, u 6= ∅.

(2) {x ∈ Z : x ∈ u for some u ∈ Zn} = Z

(3) For any u, v ∈ Zn, exactly one of the following statements hold: (3a) u = v. (3b) u ∩ v = ∅.

Proof.

(0) Pick any u ∈ Zn. By definition, there exists some x ∈ Z such that u = [x]. By Lemma (2), for the same x there
exists some r ∈ J0, n− 1K such that [x] = [r]. Hence u = [r].

(1) Pick any u ∈ Zn. There exists some x ∈ Z such that u = [x]. Since (x, x) ∈ En, we have x ∈ [x]. Then u 6= ∅.

(2) Write U = {x ∈ Z : x ∈ u for some u ∈ Zn}. By definition, we have U ⊂ Z.

Pick any x ∈ Z. We have x ∈ [x] and [x] ∈ Zn. Hence x ∈ U . It follows that Z ⊂ U .

(3) Pick any u, v ∈ Zn. (A) Suppose u = v. Then u∩v = u∩u = u 6= ∅. (B) Suppose u∩v 6= ∅. Pick some z ∈ u∩v.
Then z ∈ u and z ∈ v. Therefore there exist some x, y ∈ Z such that u = [x] and v = [y]. Since z ∈ u = [x], we
have [z] = [x]. Since z ∈ v = [y], we have [z] = [y]. Then u = [x] = [z] = [y] = v.

Remark. How to interpret Theorem (3) in terms of the ‘school-and-classes’ analogy’?

(0) The classes [0], [1], · · · , [n− 1] are exactly all the classes in the school Z.

(1) In every class in the school, there is at least one student. (There is no student-less class.)

(2) Lunch break; all classes dismissed. But every student is still somewhere in the school campus.

(3) Any two copies of ‘class namelists’ in the school are either ‘identical’ or ‘totally disjoint’.

Remark on terminologies.

(a) In light of Statement (1), Statement (2) and Statement (3) of Theorem (3), we say that Z is partitioned into
the n pairwise disjoint non-empty sets [0], [1], ..., [n− 2], [n− 1].

We may simply refer to the set (of sets) Zn = {[0], [1], · · · , [n− 2], [n− 1]} as a partition of Z.

(b) Because such a partition of Z arises ultimately from the equivalence relation Rn, we refer to Zn as the quotient
of Z by the equivalence relation Rn.

You will encounter more of these ideas and terminologies (and ‘natural consequences’ of these ideas, such as the rest
of this Handout) in advanced courses (for example, algebra and topology).

4. Theorem (4).

Define

Gα = {((u, v), w) | u, v, w ∈ Zn and there exist k, ℓ ∈ Z such that u = [k], v = [ℓ] and w = [k + ℓ]}.

Define α = (Zn

2,Zn, Gα). α is a function from Zn

2 to Zn.

Proof.

Note that Gα ⊂ (Zn

2)×Zn. Hence α is a relation from from Zn

2 to Zn.

(E) [Is each ‘input pair’ ‘assigned’ to at least one ‘output’ by α?]

Let u, v ∈ Zn. There exists some k, ℓ ∈ Z such that u = [k] and v = [ℓ]. Take w = [k + ℓ]. By definition, we
have ((u, v), w) ∈ Gα.

(U) [Is each ‘input pair’ ‘assigned’ to at most one ‘output’ by α?]

Let u, v, w,w′ ∈ Zn. Suppose ((u, v), w) ∈ Gα and ((u, v), w′) ∈ Gα. There exist some k, ℓ ∈ Z such that u = [k],
v = [ℓ] and w = [k + ℓ]. There exist some k′, ℓ′ ∈ Z such that u = [k′], v = [ℓ′] and w = [k′ + ℓ′].

Since [k] = u = [k′], we have k ≡ k′(mod n). Since [ℓ] = v = [ℓ′], we have ℓ ≡ ℓ′(mod n).

k − k′, ℓ − ℓ′ are divisible by n. Then (k + ℓ) − (k′ + ℓ′) = (k − k′) + (ℓ − ℓ′) is divisible by n. Therefore
k + ℓ ≡ k′ + ℓ′(mod n). Hence w = [k + ℓ] = [k′ + ℓ′] = w′.

It follows that α is a function from Zn

2 to Zn.

Remark. The function α is called addition in Zn because of its resemblance with the function ‘addition’ for
other more familiar mathematical objects, such as numbers and matrices. From now on, we write α(u, v) as u + v,
and call it the sum of u, v.
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5. Addition table for ‘small’ values of n:

Addition in Z2 Addition in Z3 Addition in Z4 Addition in Z5

+ [0] [1]

[0] [0] [1]

[1] [1] [0]

+ [0] [1] [2]

[0] [0] [1] [2]

[1] [1] [2] [0]

[2] [2] [0] [1]

+ [0] [1] [2] [3]

[0] [0] [1] [2] [3]

[1] [1] [2] [3] [0]

[2] [2] [3] [0] [1]

[3] [3] [0] [1] [2]

+ [0] [1] [2] [3] [4]

[0] [0] [1] [2] [3] [4]

[1] [1] [2] [3] [4] [0]

[2] [2] [3] [4] [0] [1]

[3] [3] [4] [0] [1] [2]

[4] [4] [0] [1] [2] [3]

Addition in Z6 Addition in Z7

+ [0] [1] [2] [3] [4] [5]

[0] [0] [1] [2] [3] [4] [5]

[1] [1] [2] [3] [4] [5] [0]

[2] [2] [3] [4] [5] [0] [1]

[3] [3] [4] [5] [0] [1] [2]

[4] [4] [5] [0] [1] [2] [3]

[5] [5] [0] [1] [2] [3] [4]

+ [0] [1] [2] [3] [4] [5] [6]

[0] [0] [1] [2] [3] [4] [5] [6]

[1] [1] [2] [3] [4] [5] [6] [0]

[2] [2] [3] [4] [5] [6] [0] [1]

[3] [3] [4] [5] [6] [0] [1] [2]

[4] [4] [5] [6] [0] [1] [2] [3]

[5] [5] [6] [0] [1] [2] [3] [4]

[6] [6] [0] [1] [2] [3] [4] [5]

Addition in Z8 Addition in Z9

+ [0] [1] [2] [3] [4] [5] [6] [7]

[0] [0] [1] [2] [3] [4] [5] [6] [7]

[1] [1] [2] [3] [4] [5] [6] [7] [0]

[2] [2] [3] [4] [5] [6] [7] [0] [1]

[3] [3] [4] [5] [6] [7] [0] [1] [2]

[4] [4] [5] [6] [7] [0] [1] [2] [3]

[5] [5] [6] [7] [0] [1] [2] [3] [4]

[6] [6] [7] [0] [1] [2] [3] [4] [5]

[7] [7] [0] [1] [2] [3] [4] [5] [6]

+ [0] [1] [2] [3] [4] [5] [6] [7] [8]

[0] [0] [1] [2] [3] [4] [5] [6] [7] [8]

[1] [1] [2] [3] [4] [5] [6] [7] [8] [0]

[2] [2] [3] [4] [5] [6] [7] [8] [0] [1]

[3] [3] [4] [5] [6] [7] [8] [0] [1] [2]

[4] [4] [5] [6] [7] [8] [0] [1] [2] [3]

[5] [5] [6] [7] [8] [0] [1] [2] [3] [4]

[6] [6] [7] [8] [0] [1] [2] [3] [4] [5]

[7] [7] [8] [0] [1] [2] [3] [4] [5] [6]

[8] [8] [0] [1] [2] [3] [4] [5] [6] [7]

6. Refer to the Handout Groups.

Theorem (5).

(Zn,+) is an abelian group.

Proof.

• [Associativity?]

Let u, v, w ∈ Zn. There exist some k, ℓ,m ∈ Z such that u = [k], v = [ℓ], w = [m]. We have (u + v) + w =
([k] + [ℓ]) + [m] = [k + ℓ] + [m] = [(k + ℓ) +m] = [k + (ℓ+m)] = [k] + [ℓ+m] = [k] + ([ℓ] + [m]) = u+ (v + w).

• [Commutativity?]

Let u, v ∈ Zn. There exist some k, ℓ ∈ Z such that u = [k], v = [ℓ]. We have u+ v = [k]+ [ℓ] = [k+ ℓ] = [ℓ+k] =
[ℓ] + [k] = v + u.

• [Existence of identity element?]

Write 0n = [0]. Let u ∈ Zn. There exists some k ∈ Z such that u = [k]. We have 0n + u = [0] + [k] = [0 + k] =
[k] = u, and u+ 0n = 0n + u = u.

• [Existence of inverse element?]

Let u ∈ Zn. There exists some k ∈ Z such that u = [k]. Take v = [−k]. We have u+v = [k]+[−k] = [k+(−k)] =
[0] = 0n, and v + u = u+ v = 0n.

It follows that (Zn,+) is an abelian group.
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Corollary (6).

For any u, v ∈ Zn, there exists some unique w ∈ Zn such that u+ w = v.

Proof.

Let u, v ∈ Zn.

• [Existence argument.]

There exist some k, ℓ ∈ Z such that u = [k], v = [ℓ]. Take w = [ℓ−k]. We have u+w = [k]+[ℓ−k] = [k+ℓ−k] =
[ℓ] = v.

• [Uniqueness argument.]

Let w,w′ ∈ Zn. Suppose u + w = v and u + w′ = v. There exists some t ∈ Zn such that t + u = 0n. Now we
have w = 0n + w = (t+ u) + w = t+ (u+ w) = t+ v = t+ (u+ w′) = (t+ u) + w′ = 0n + w′ = w′.

Remark. Here we ‘subtract u from v’: w is the difference of v from u, and we write w = v − u. We write 0n − u
as −u; it is the unique (additive) inverse of u.

7. Theorem (7).

Define

Gµ = {((u, v), w) | u, v, w ∈ Zn and there exist k, ℓ ∈ Z such that u = [k], v = [ℓ] and w = [kℓ]}.

Define µ = (Zn

2,Zn, Gµ). µ is a function from Zn

2 to Zn.

Proof.

Note that Gµ ⊂ (Zn

2)×Zn. Hence µ is a relation from from Zn

2 to Zn.

(E) [Is each ‘input pair’ ‘assigned’ to at least one ‘output’ by µ?]

Let u, v ∈ Zn. There exists some k, ℓ ∈ Z such that u = [k] and v = [ℓ]. Take w = [kℓ]. By definition, we have
((u, v), w) ∈ Gµ.

(U) [Is each ‘input pair’ ‘assigned’ to at most one ‘output’ by µ?]

Let u, v, w,w′ ∈ Zn. Suppose ((u, v), w) ∈ Gµ and ((u, v), w′) ∈ Gµ. There exist some k, ℓ ∈ Z such that u = [k],

v = [ℓ] and w = [kℓ]. There exist some k′, ℓ′ ∈ Z such that u = [k′], v = [ℓ′] and w = [k′ℓ′].

Since [k] = u = [k′], we have k ≡ k′(mod n). Since [ℓ] = v = [ℓ′], we have ℓ ≡ ℓ′(mod n).

k−k′, ℓ−ℓ′ are divisible by n. Then kℓ−k′ℓ′ = (k−k′)ℓ+k′(ℓ−ℓ′) is divisible by n. Therefore kℓ ≡ k′ℓ′(mod n).
Hence w = [kℓ] = [k′ℓ′] = w′.

It follows that µ is a function from Zn

2 to Zn.

Remark. The function µ is called multiplication in Zn because of its resemblance with the function ‘multipli-
cation’ for other more familiar mathematical objects, such as numbers and matrices. From now on, we write µ(u, v)
as u× v, and call it the product of u, v.

8. Multiplication table for ‘small’ values of n:

Multiplication in Z2 Multiplication in Z3 Multiplication in Z4 Multiplication in Z5

× [0] [1]

[0] [0] [0]

[1] [0] [1]

× [0] [1] [2]

[0] [0] [0] [0]

[1] [0] [1] [2]

[2] [0] [2] [1]

× [0] [1] [2] [3]

[0] [0] [0] [0] [0]

[1] [0] [1] [2] [3]

[2] [0] [2] [0] [2]

[3] [0] [3] [2] [1]

× [0] [1] [2] [3] [4]

[0] [0] [0] [0] [0] [0]

[1] [0] [1] [2] [3] [4]

[2] [0] [2] [4] [1] [3]

[3] [0] [3] [1] [4] [2]

[4] [0] [4] [3] [2] [1]

Multiplication in Z6 Multiplication in Z7

× [0] [1] [2] [3] [4] [5]

[0] [0] [0] [0] [0] [0] [0]

[1] [0] [1] [2] [3] [4] [5]

[2] [0] [2] [4] [0] [2] [4]

[3] [0] [3] [0] [3] [0] [3]

[4] [0] [4] [2] [0] [4] [2]

[5] [0] [5] [4] [3] [2] [1]

× [0] [1] [2] [3] [4] [5] [6]

[0] [0] [0] [0] [0] [0] [0] [0]

[1] [0] [1] [2] [3] [4] [5] [6]

[2] [0] [2] [4] [6] [1] [3] [5]

[3] [0] [3] [6] [2] [5] [1] [4]

[4] [0] [4] [1] [5] [2] [6] [3]

[5] [0] [5] [3] [1] [6] [4] [2]

[6] [0] [6] [5] [4] [3] [2] [1]
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Multiplication in Z8 Multiplication in Z9

× [0] [1] [2] [3] [4] [5] [6] [7]

[0] [0] [0] [0] [0] [0] [0] [0] [0]

[1] [0] [1] [2] [3] [4] [5] [6] [7]

[2] [0] [2] [4] [6] [0] [2] [4] [6]

[3] [0] [3] [6] [1] [4] [7] [2] [5]

[4] [0] [4] [0] [4] [0] [4] [0] [4]

[5] [0] [5] [2] [7] [4] [1] [6] [3]

[6] [0] [6] [4] [2] [0] [6] [4] [2]

[7] [0] [7] [6] [5] [4] [3] [2] [1]

× [0] [1] [2] [3] [4] [5] [6] [7] [8]

[0] [0] [0] [0] [0] [0] [0] [0] [0] [0]

[1] [0] [1] [2] [3] [4] [5] [6] [7] [8]

[2] [0] [2] [4] [6] [8] [1] [3] [5] [7]

[3] [0] [3] [6] [0] [3] [6] [0] [3] [6]

[4] [0] [4] [8] [3] [7] [2] [6] [1] [5]

[5] [0] [5] [1] [6] [2] [7] [3] [8] [4]

[6] [0] [6] [3] [0] [6] [3] [0] [6] [3]

[7] [0] [7] [5] [3] [1] [8] [6] [4] [2]

[8] [0] [8] [7] [6] [5] [4] [3] [2] [1]

9. Theorem (8).

The following statements hold:

(a) For any u, v ∈ Zn, u× v = v × u.

(b) For any u, v, w ∈ Zn, (u× v)× w = u× (v × w).

(c) There exists some e ∈ Zn, namely e = [1], such that e× u = u× e = u.

(d) For any u, v, w ∈ Zn, u× (v + w) = (u× v) + (u× w) and (u+ v)× w = (u× w) + (v × w).

Proof.

(a) Let u, v ∈ Zn. There exist some k, ℓ ∈ Z such that u = [k], v = [ℓ]. We have u × v = [k] × [ℓ] = [kℓ] = [ℓk] =
[ℓ]× [k] = v × u.

(b) Let u, v, w ∈ Zn. There exist some k, ℓ,m ∈ Z such that u = [k], v = [ℓ], w = [m]. We have (u × v) × w =
([k]× [ℓ])× [m] = [kℓ]× [m] = [(kℓ)m] = [k(ℓm)] = [k]× [ℓm] = [k]× ([ℓ]× [m]) = u× (v × w).

(c) Note that [1] ∈ Zn.

Pick any u ∈ Zn. There exists some k ∈ Z such that u = [k]. We have [1]× u = [1]× [k] = [1 · k] = [k] = u and
u× [1] = [1]× u = u.

(d) Let u, v, w ∈ Zn. There exist some k, ℓ,m ∈ Z such that u = [k], v = [ℓ], w = [m].

We have u×(v+w) = [k]×([ℓ]+[m]) = [k]×[ℓ+m] = [k(ℓ+m)] = [kℓ+km] = [kℓ]+[km] = ([k]×[ℓ])+([k]×[m]) =
(u× v) + (u× w).

Also, (u+ v)× w = w × (u+ v) = (w × u) + (w × v) = (u× w) + (v × w).

Remark on terminologies.

Because of Statement (c), it is natural for us to write [1] as 1n.

By virtue of Theorem (4), Theorem (5), Theorem (7) and Theorem (8), we refer to (Zn,+,×) as a commutative
rings with unity with additive identity 0n and multiplicative identity 1n.

10. For the moment, assume n is a prime number. Write n = p.

Lemma (9).

For any x ∈ Z, if x is not divisible by p then there exists some y ∈ Z such that xy ≡ 1(mod p) and y is not divisible
by p.

Proof.

Pick any x ∈ Z. Suppose x is not divisible by p. Then gcd(x, p) = 1. By Bezôut’s Identity, there exist some y, t ∈ Z

such that yx+ tp = 1. We have xy − 1 = tp. Then xy − 1 is divisible by p. Therefore xy ≡ 1(mod p).

We verify that y is not divisible by p.

• Suppose it were true that y was divisible by p. Then there would exist some s ∈ Z such that y = sp. We would
have (sx+ t)p = yx+ tp = 1. Therefore 1 would be divisible by p. Contradiction arises.

Hence y is not divisible by p in the first place.
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Theorem (10).

Let u ∈ Zp. Suppose u 6= 0p. Then there exists some unique v ∈ Zp\{0p} such that v × u = u× v = 1p.

Proof.

Let u ∈ Zp. Suppose u 6= 0p.

There exists some k ∈ Z such that u = [k]. Since u 6= 0p, we have k /∈ [0]. Therefore k is not divisible by p. (Why?)

Now there exists some ℓ ∈ Z such that kℓ ≡ 1(mod p) and ℓ is not divisible by p.

Take v = [ℓ]. Since ℓ is not divisible by p, we have v 6= 0p. We have u × v = [k] × [ℓ] = [kℓ] = [1] = 1p. Also
v × u = u× v = 1p.

Corollary (11).

Let u, v ∈ Zp. Suppose u 6= 0p and v 6= 0p. Then there exists some unique w ∈ Zp\{0p} such that u× w = v.

Proof.

Let u, v ∈ Zp. Suppose u 6= 0p and v 6= 0p.

• [Existence argument.]

There exists some ũ ∈ Zp\{0p} such that u× ũ = ũ× u = 1p.

Take w = ũ× u. We have u× w = u× (ũ× v) = (u× ũ)× v = 1p × v = v.

We verify that w 6= 0p:

∗ Suppose it were true that w = 0p.

There exists some k ∈ Zp such that u = [k]. Now we would have v = u× w = [k]× [0] = [k × 0] = [0] = 0p.
But v 6= 0p. Contradiction arises.
Hence w 6= 0p in the first place.

• [Uniqueness argument.]

Let w,w′ ∈ Zp\{0p}. Suppose u× w = v and u× w′ = v. Then u× w = u× w′.

There exist some k,m,m′ ∈ Z such that u = [k], w = [m] and w′ = [m′]. Now [km] = [k]×[m] = [k]×[m′] = [km′].
Then km ≡ km′(mod p). Therefore k(m−m′) ≡ 0(mod p). k(m−m′) is divisible by p.

Recall that u 6= 0p. Then k is not divisible by p. By Euclid’s Lemma, m − m′ is divisible by p. Therefore

m ≡ m′(mod p). Hence w = [m] = [m′] = w′.

Remark on terminologies.

By virtue of Theorem (10), we refer to (Zp,+,×) as a field. Because Zp has only finitely many elements, (Zp,+,×)

is a finite field, in contrast to ‘infinite’ fields like (Q,+,×), (R,+,×) and (C,+,×).

11. What if n is definitely not a prime number?

Theorem (12).

Suppose n is not a prime number. Then there exist some u, v ∈ Zn\{0n} such that u× v = 0n.

Proof.

Suppose n is not a prime number. Then there exists some positive integers h, k such that 1 < h < n and 1 < k < n
and hk = n. By the definition of multiplication in Zn, we have [h] × [k] = [n] = 0n. But since 1 < h < n and
1 < k < n, we also have [h] 6= 0n and [k] 6= 0n.

Remark. Such elements u, v of Zn\{0n} which satisfy u× v = 0n are called zero divisors.

12. The result below holds whether n is a prime number or not.

Theorem (13).

1n + 1n + · · ·+ 1n
︸ ︷︷ ︸

n times

= 0n.

Proof.

By definition, 1n + 1n + · · ·+ 1n
︸ ︷︷ ︸

n times

= [1] + [1] + · · ·+ [1]
︸ ︷︷ ︸

n times

= [1 + 1 + · · ·+ 1
︸ ︷︷ ︸

n times

] = [n] = 0n.

Remark. We do not obtain the integer 0 by adding up many copies of the integer 1 together.

The commutative ring with unity (Zn,+,×) is some mathematical object which possesses many properties common
to (Z,+,×), (Q,+,×), but which is decisively different from them. (This is one of the starting points of MATH2070.)
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