1. We assume $n \in \mathbb{N} \setminus \{0, 1\}$ throughout this Handout.

Definitions.

- (a) Let $x, y \in \mathbb{Z}$. x is said to be congruent to y modulo n if x y is divisible by n. We write $x \equiv y \pmod{n}$.
- (b) Define $E_n = \{(x, y) \mid x, y \in \mathbb{Z} \text{ and } x \equiv y \pmod{n}\}, \text{ and } R_n = (\mathbb{Z}, \mathbb{Z}, E_n).$ We call R_n the congruence modulo n relation on \mathbb{Z} .

 R_n is an equivalence relation in **Z**.

· I Rn reflexive?	· Is Rn symmetric?	· Is Rn transit
Pickany xEZ.	Pick any x, y & Z. Suppose (x, y) & En.	Pick any x, y, ZE
Note that	Then X=y(mod n).	Then x=y(mod h)
X-X=0=0.n. Also note that 0€Z.	Therefore x-y is divisible by n. Hence there exits some kEZ	therefore x-y and
Then x-x is divisible	such that $x-y=kn$.	Hence there exist x-y=kn and
by n . Therefore $x = x$ (mod n).	Note that $y-x=(-k)\cdot n$ and $-k\in\mathbb{Z}$. Then $y-x$ is divisible by n .	Note that x-z:
Hence (x,x) EEn.	Therefore $y = x (mod n)$.	Then x-zij o
	Henco (y,x) Et.	i Therefore $X = Z$

1. T. D transitive?

En and $(y, z) \in E_n$.) and $y \ge z$ (mod n). If y - z are divisible by n. some k, LEZ Such that l y-z=lh. = (x-y)+(y-z)=(k+l)ndivisible by n. (mod n).

Definitions.

- (a) For any $x \in \mathbb{Z}$, define $[x] = \{y \in \mathbb{Z} : (x,y) \in E_n\}$. The set [x] is called the equivalence class of x under the equivalence relation R_n .
- (b) Define $\mathbb{Z}_n = \{[x] \mid x \in \mathbb{Z}\}.$ \mathbb{Z}_n is called as the quotient of the set \mathbb{Z} by equivalence relation R_n .

Remark.

This 'school-and-classes' analogy' is intended to help us see the intuitive idea about the definitions above.

Read:

- 'integer x' as 'student x',
- ullet 'the set of all integers $\mathbb Z$ ' as 'the school $\mathbb Z$ (whose elements are exactly all the students of the school)',
- ' $(x,y) \in E_n$ ' (or equivalently ' $x \equiv y \pmod{n}$ ') as 'student x is in the same class as student y'.

2. Lemma (1).

Let $x, y \in \mathbb{Z}$. The following statements are equivalent:

(a) $x - y = qn \text{ for some } q \in \mathbb{Z}.$

 $(d) \quad y \in [x].$

(b) $x \equiv y \pmod{n}$.

(e) $x \in [y]$.

(c) $(x,y) \in E_n$.

(f) [x] = [y].

Proof. Exercise. (This is nothing but a tedious game of words.)

Remark.

How to interpret Lemma (1) in terms of the 'school-and-classes' analogy'?

Recall that $(x, y) \in E_n$ is read as 'student x is in the same class as student y'. Now:

• ' $y \in [x]$ ' reads:

'Student y is an element of the set of all class mates of student x.'

• ' $x \in [y]$ ' reads

'Student x is an element of the set of all classmates of student y!

• '[x] = [y]' reads:

'The set of all classmates of student x is the same as the set of all classmates of student y.'

Each of these is the same as 'x is in the same class as y'.

Lemma (2).

For any $x \in \mathbb{Z}$, there exists some unique $r \in [0, n-1]$ such that [x] = [r].

Proof.

Let $x \in \mathbb{Z}$.

• [Existence argument.]

Apply Division Algorithm:
There exist some $q, r \in \mathbb{Z}$ such that x = qn + r and $r \in [0, n-1]$.

For this $q \in \mathbb{Z}$, we have x - r = qn.

Then, by Lemma (1), we have [x] = [r].

• [Uniqueness argument?]

Let $S, t \in [0, n-1]$. Suppose [x] = [s] and [x] = [t]. Then [s] = [x] = [t]. By Lemma(1), s - t is divisible by n. Since $s, t \in [0, n-1]$, we have $0 \le |s-t| \le n-1 < n$. Then |s-t| = 0. (Why?) Hence s = t.

Remark.

How to interpret Lemma (2) in terms of the 'school-and-classes' analogy'?

No matter which student is the school Z is picked out, he/she will have exactly one classmate amongst 0,1,..., n-1.

3. Theorem (3).

The following statements hold:

- (0) $\mathbb{Z}_n = \{[0], [1], \cdots, [n-2], [n-1]\}.$
- (1) For any $u \in \mathbb{Z}_n$, $u \neq \emptyset$.
- (2) $\{x \in \mathbb{Z} : x \in u \text{ for some } u \in \mathbb{Z}_n\} = \mathbb{Z}$
- (3) For any $u, v \in \mathbb{Z}_n$, exactly one of the following statements hold: (3a) u = v. (3b) $u \cap v = \emptyset$.

Remark.

How to interpret Theorem (3) in terms of the 'school-and-classes' analogy'?

- (0) The classes $[0], [1], \dots, [n-1]$ are exactly all the classes in the school $\mathbb Z$.
- (1) In every class in the school, there is at least one student.
- (2) Lunch break; all classes dismissed. But every student is still somewhere in the school campus.
- (3) Any two copies of 'class namelists' in the school are either 'identical' or 'totally disjoint'.

Theorem (3).

The following statements hold:

- (0) $\mathbb{Z}_n = \{[0], [1], \cdots, [n-2], [n-1]\}.$
- (1) For any $u \in \mathbb{Z}_n$, $u \neq \emptyset$.
- (2) $\{x \in \mathbb{Z} : x \in u \text{ for some } u \in \mathbb{Z}_n\} = \mathbb{Z}$
- (3) For any $u, v \in \mathbb{Z}_n$, exactly one of the following statements hold: (3a) u = v. (3b) $u \cap v = \emptyset$.

Proof.

- (0) Pick any $u \in \mathbb{Z}_n$. By the definition of \mathbb{Z}_n , there exists some $x \in \mathbb{Z}$ and that u = [x]. By Lemma (2), there exists some $r \in [0, n-1]$ such that [x] = [r]. Then for this $r \in [0, n-1]$, we have u = [x] = [r].
- (1) Pick any $u \in \mathbb{Z}_n$. By the definition of \mathbb{Z}_n , there exist some $x \in \mathbb{Z}$ such that u = [x]. By reflexivity, $(x,x) \in \mathbb{E}_n$. By Lemma (1), $x \in [x] = u$. Then $u \neq \emptyset$.
- (2) Write $U = \{x \in \mathbb{Z} : x \in u \text{ for some } u \in \mathbb{Z}_n\}$. By definition, we have $U \subset \mathbb{Z}$.

[Ask: Is it true that $Z \subset U$? Check: 'For any object x, if $x \in Z$ then $x \in U'$.]

Pick any object x. Suppose $x \in Z$. We have $x \in [x]$ and $[x] \in Z_n$. Then $x \in U$.

It follows that $Z \subset U$.

Theorem (3).

The following statements hold:

- (0) $\mathbb{Z}_n = \{[0], [1], \cdots, [n-2], [n-1]\}.$
- (1) For any $u \in \mathbb{Z}_n$, $u \neq \emptyset$.
- (2) $\{x \in \mathbb{Z} : x \in u \text{ for some } u \in \mathbb{Z}_n\} = \mathbb{Z}$
- (3) For any $u, v \in \mathbb{Z}_n$, exactly one of the following statements hold: (3a) $\underline{u} = \underline{v}$. (3b) $\underline{u} \cap \underline{v} = \emptyset$.

Proof.

- (3) Pick any $u, v \in \mathbb{Z}_n$. [What to deduce? ' $[H \rightarrow (\sim K)] \land [(\sim K) \rightarrow H]$ ' is true. Why? Truth table?]
 - (A) Suppose u = v. Then unv = unu = u + \$ by Statement (1).
 - (B) Suppose $u \cap v \neq \emptyset$. Pick some ZEUNV. We have ZEU and ZEV.
 - Since $u \in \mathbb{Z}_n$, there exists some $x \in \mathbb{Z}$ such that u = [x]. Since $v \in \mathbb{Z}_n$, there exists some $y \in \mathbb{Z}$ such that v = [y]. We have $z \in u = [x]$. Then [z] = [x] by Lemma (1). We have $z \in u = [y]$. Then [z] = [y] by Lemma (1). Then u = [x] = [x] = [y] = V. \Box

Theorem (3).

The following statements hold:

- (0) $\mathbb{Z}_n = \{[0], [1], \cdots, [n-2], [n-1]\}.$
- (1) For any $u \in \mathbb{Z}_n$, $u \neq \emptyset$.
- (2) $\{x \in \mathbb{Z} : x \in u \text{ for some } u \in \mathbb{Z}_n\} = \mathbb{Z}$
- (3) For any $u, v \in \mathbb{Z}_n$, exactly one of the following statements hold: (3a) u = v. (3b) $u \cap v = \emptyset$.

Remark on terminologies.

- (a) \mathbb{Z} is **partitioned** into the n pairwise disjoint non-empty sets [0], [1], ..., [n-2], [n-1]. We may simply refer to the set (of sets) \mathbb{Z}_n as a **partition of \mathbb{Z}**.
- (b) Because such a partition of \mathbb{Z} arises ultimately from the equivalence relation R_n , we refer to \mathbb{Z}_n as the quotient of \mathbb{Z} by the equivalence relation R_n .

You will encounter more of these ideas and terminologies (and 'natural consequences' of these ideas, such as the rest of this Handout) in advanced courses (for example, *algebra* and *topology*).

4. Theorem (4).

Define

Define
$$G_{\alpha} = \left\{ ((u,v),w) \middle| \begin{array}{l} u,v,w \in \mathbb{Z}_n \text{ and} \\ there \text{ exist } k,\ell \in \mathbb{Z} \text{ such that } u = [k], v = [\ell] \text{ and } w = [k+\ell] \end{array} \right\}.$$

We want to define the function $\alpha: \mathbb{Z}_n^2 \to \mathbb{Z}_n$ through this declaration:

Define a: Zn > In by a ([k], [l]) = [k+l] whenever k, leZ'

Define $\alpha = (\mathbb{Z}_n^2, \mathbb{Z}_n, G_\alpha)$.

 α is a function from \mathbb{Z}_n^2 to \mathbb{Z}_n .

Proof.

Note that $G_{\alpha} \subset (\mathbb{Z}_n^2) \times \mathbb{Z}_n$. Hence α is a relation from \mathbb{Z}_n^2 to \mathbb{Z}_n .

(E) [Is each 'input pair' 'assigned' to at least one 'output' by α ?]

[Check: For any u, v & Zn, there exits some w & Zn such that ((u,v), w) & Ga] Proce any u, VEZIn. There exit some k, l \(\) \(By definition of Ga, we have ((u,v), w) & Ga.

(U) [Is each 'input pair' 'assigned' to at most one 'output' by α ?]

Theorem (4).

Define

$$G_{\alpha} = \left\{ ((u, v), w) \middle| \begin{array}{l} u, v, w \in \mathbb{Z}_n \text{ and} \\ \text{there exist } k, \ell \in \mathbb{Z} \text{ such that } u = [k], v = [\ell] \text{ and } w = [k + \ell] \end{array} \right\}.$$

Define $\alpha = (\mathbb{Z}_n^2, \mathbb{Z}_n, G_\alpha)$.

 α is a function from \mathbb{Z}_n^2 to \mathbb{Z}_n .

Proof.

Note that $G_{\alpha} \subset (\mathbb{Z}_n^2) \times \mathbb{Z}_n$. Hence α is a relation from \mathbb{Z}_n^2 to \mathbb{Z}_n .

(E) [Is each 'input pair' 'assigned' to at least one 'output' by α ? Yes.]

(U) [Is each 'input pair' 'assigned' to at most one 'output' by α ?]

[Check: For any $u, v, w, w' \in \mathbb{Z}_n$, if $(u, v), w' \in \mathbb{G}_n$ and $(u, v), w' \in \mathbb{G}_n$ then w = w'.]

Pick any $u, v, w, w' \in \mathbb{Z}_n$. Suppose $((u, v), w) \in \mathbb{G}_n$ and $((u, v), w') \in \mathbb{G}_n$.

Since $((u, v), w) \in \mathbb{G}_n$, there exist some $k, k \in \mathbb{Z}$ such that u = [k'], v = [l'] and w' = [k'+l'].

We have [k] = u = [k']. Then k = k' (mod n) by Lemma (1).

We have [l] = V = [l']. Then l = l' (mod n) by Lemma (1). k - k', l - l' are divisible by n. Then (k+l) - (k'+l') is also divisible by n.

Therefore k+l = k'+l' (mod n). Hence w = [k+l] = [k'+l'] = w'.

Theorem (4).

Define

$$G_{\alpha} = \left\{ ((u, v), w) \middle| \begin{array}{l} u, v, w \in \mathbb{Z}_n \text{ and} \\ \text{there exist } k, \ell \in \mathbb{Z} \text{ such that } u = [k], v = [\ell] \text{ and } w = [k + \ell] \end{array} \right\}.$$

Define $\alpha = (\mathbb{Z}_n^2, \mathbb{Z}_n, G_\alpha)$.

 α is a function from \mathbb{Z}_n^2 to \mathbb{Z}_n .

Proof.

Note that $G_{\alpha} \subset (\mathbb{Z}_n^2) \times \mathbb{Z}_n$. Hence α is a relation from from \mathbb{Z}_n^2 to \mathbb{Z}_n .

- (E) [Is each 'input pair' 'assigned' to at least one 'output' by α ? Yes.]
- (U) [Is each 'input pair' 'assigned' to at most one 'output' by α ? Yes.]

It follows that α is a function from \mathbb{Z}_n^2 to \mathbb{Z}_n .

Remark.

The function α is called addition in \mathbb{Z}_n because of its resemblance with the function 'addition' for other more familiar mathematical objects, such as numbers and matrices.

From now on, we write $\alpha(u, v)$ as u + v, and call it the sum of u, v.

m now on, we write
$$\alpha(u,v)$$
 as $u+v$, and call it the sum of u,v .

By the definition of addition in \mathbb{Z}_n ,

Whenever k , $l \in \mathbb{Z}$, we have $\lceil k \rceil + \lceil l \rceil \rceil = \langle (\lceil k \rceil, \lceil l \rceil) \rangle = \lceil k + l \rceil$.

This happens in \mathbb{Z}_n .

5. Addition table for 'small' values of n:

Addition in \mathbb{Z}_2 Addition \mathbb{Z}_3 Addition in \mathbb{Z}_4

Addition in \mathbb{Z}_5

Addition in \mathbb{Z}_6

Addition in \mathbb{Z}_7

Addition table for 'small' values of n:

Addition in \mathbb{Z}_8

Addition in \mathbb{Z}_9

12	[0]	[4]	[0]	[0]	[4]	[r]	[c]	[]		+	[0]	$\lfloor 1 \rfloor$	[2]	[3]	[4]	[5]	[6]	[7]	[8]
+	[0]	$\lfloor 1 \rfloor$	[2]	[3]	[4]	[5]	[6]	[7]	•	[0]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
[0]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]					LJ		L J	LJ	LJ		
[1]	[1]	[0]	[0]	[4]	[[]	[6]	[7]	[0]		[1]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[0]
[1]	[T]	[2]	[3]	[4]	[5]	[6]	[7]	[0]		[2]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[0]	[1]
[2]	[2]	[3]	[4]	[5]	[6]	[7]	[0]	[1]		L 1	LJ	L]	L 3	L J	L J	L J		LJ	L 3
		[4]	[]		[<i>1</i> 7]	[0]	[1]	[0]		[3]	[3]	[4]	[5]	[6]	[7]	[8]	[0]	[1]	[2]
[3]	[3]	[4]	[5]	[6]	[7]	[0]	[1]	[2]		[4]	[4]	[5]	[6]	[7]	[8]	[0]	[1]	[2]	[3]
[4]	[4]	[5]	[6]	[7]	[0]	[1]	[2]	[3]		L J	L J	ГЛ		LJ	L J		LJ	. L Ј	LJ
ГЛ	ГЛ	L]	LJ	ГЛ	ь 1		L 3	LJ		[5]	[5]	[6]	[7]	[8]	[0]	[1]	[2]	[3]	[4]
[5]	[5]	[6]	[7]	[0]	[1]	[2]	[3]	[4]		[6]	[6]	[7]	[8]	[0]	[1]	[2]	[3]	[4]	[5]
[6]	[6]	[7]	[0]	[1]	[2]	[3]	[4]	[5]		[O]	[U]	[1]	[O]	[U]	ГЛ		[၁]	[4]	[ပ]
LJ	l L J			г л	L 3	LJ		L 1		[7]	$\lceil 7 \rceil$	[8]	[0]	[1]	[2]	[3]	[4]	[5]	[6]
[7]	[7]	[0]	[1]	[2]	[3]	[4]	[5]	[6]		[0]	[0]	[0]	[1]	[0]	[0]	[4]	[2]	[6]	[7]
	1									[8]	[8]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]

6. **Theorem (5)**.

 $(\mathbb{Z}_n,+)$ is an abelian group.

Proof.

- [Associativity?] [Check: For any $u, v, w \in \mathbb{Z}_n$, (u+v)+w=u+(v+w).]

 Let $u, v, w \in \mathbb{Z}_n$. There exist some $k, l, m \in \mathbb{Z}$ such that u=[k], v=[l] and w=[m].

 Then (u+v)+w=([k]+[l])+[m]=[k+l]+[m] = [(k+l)+m]=[k+(l+m)]=...=u+(v+w).
- [Commutativity?] [Check: For any u, veZn, u+v=v+u.]

 Let u, v∈ Zn.

 There exit some k, l∈Z such that u=[k] and v=[l].

 Then u+v = [k]+[l]=[k+l]=[l+k]=...=v+u...
- [Existence of identity element?] [Check: There exists some e ∈ Zn sudthat

 Define On=[0].

 Pick any u∈ Zn. There exists some | k∈ Z such that u=[k].

 Then u+On=[k]+[0]=[k+0]=[k]=u. Also, On+u=...=u.o
- [Existence of inverse element?] [Check: For any $u \in \mathbb{Z}_n$, there exists some $v \in \mathbb{Z}_n$]

 Let $u \in \mathbb{Z}_n$.

 There exists some $k \in \mathbb{Z}$ such that $u = \{k\}$. Note that $-k \in \mathbb{Z}$.

Define V=[-k]. Then u+V=[k]+[-k]=[k+(-k)]=[0]=On. Also, v+u=...= On.

It follows that $(\mathbb{Z}_n, +)$ is an abelian group.

Corollary (6).

For any $u, v \in \mathbb{Z}_n$, there exists some unique $w \in \mathbb{Z}_n$ such that u + w = v.

Proof.

Let $u, v \in \mathbb{Z}_n$.

• [Existence argument.]

By Theorem (5), there exists some $t \in \mathbb{Z}_n$ such that $u+t=0_n=t+u$.

Define w=t+v. By definition, $w \in \mathbb{Z}_n$.

Then $u+w=u+(t+v)=(u+t)+v=0_n+v=v$.

[Theorem (5)] [Theorem (5)]

• [Uniqueness argument.]

Let $W, W' \in \mathbb{Z} n$. Suppose u + W = V and u + W' = V. Then u + W = V = u + W'. By Theorem (5), there exists some $t \in \mathbb{Z} n$ such that u + t = 0n = t + u. W = 0n + W = (t + u) + W = t + (u + W) = t + (u + W')[Theorem (5)] = (t + u) + W' = W'.

Remark. Here we 'subtract u from v': w is the difference of v from u, and we write w = v - u. We write $0_n - u$ as -u; it is the unique (additive) inverse of u.

7. Theorem (7).

Define

We want to define the function
$$\mu: \mathbb{Z}_n^2 \to \mathbb{Z}_n$$

through this declaration:
Define $\mu: \mathbb{Z}_n^2 \to \mathbb{Z}_n$ by $\mu(\mathbb{Z}_k, \mathbb{Z}_n) = \mathbb{Z}_k$ whenever $k, l \in \mathbb{Z}_n$.
But is this μ well-defined as a function?

$$G_{\mu} = \left\{ ((u, v), w) \middle| \begin{array}{l} u, v, w \in \mathbb{Z}_n \text{ and} \\ there \text{ exist } k, \ell \in \mathbb{Z} \text{ such that } u = [k], v = [\ell] \text{ and } w = [k\ell] \end{array} \right\}.$$

Define $\mu = (\mathbb{Z}_n^2, \mathbb{Z}_n, G_{\mu}).$ μ is a function from \mathbb{Z}_n^2 to \mathbb{Z}_n .

Proof. Exercise. (Imitate the argument for Theorem (4).)

Remark. The function μ is called **multiplication in Z**_n because of its resemblance with the function 'multiplication' for other more familiar mathematical objects, such as numbers and matrices.

From now on, we write $\mu(u, v)$ as $u \times v$, and call it the product of u, v.

By the definition of multiplication in
$$\mathbb{Z}_n$$
, wherever $k, l \in \mathbb{Z}_n$, we have $[k] \times [l] = \mu([k], [l]) = [k \times l]$ This happens in \mathbb{Z}_n .

8. Multiplication table for 'small' values of n:

[k] x [l] = [k.l] This happens in In. This happens in I.

Multiplication in \mathbb{Z}_2 Multiplication \mathbb{Z}_3 Multiplication in \mathbb{Z}_4 Multiplication in \mathbb{Z}_5

Multiplication in \mathbb{Z}_7

Multiplication in \mathbb{Z}_6

[6]3 [5][0][0][0][0][6][5]|4| [3][3] [3]3 [3][4][2]|4| [5]

Multiplication table for 'small' values of n:

Multiplication in \mathbb{Z}_8

Multiplication in \mathbb{Z}_9

[6]

		ا ادما	[4]	[0]	[0]	F 41	Γ⊷ 1	ر ما	[]	×	[0]	[1]	[2]
_	X	[0]	[1]	L J			[5]	[6]	[7]	[0]	[0]	[0]	[0]
	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	ГЛ	r 7	[1]	
	[1]	[0]	[1]	[2]	. [3]	[4]	[5]	[6]	[7]				
	[2]						[2]		[6]	[2]	[0]	[2]	[4]
	LJ	LJ	L 3							[3]	[0]	[3]	[6]
	[3]				[1]			[2]	LJ	[4]	[0]	[4]	[8]
	[4]	[0]	[4]	[0]	[4]	[0]	[4]	[0]	[4]	[5]	L 3		
	[5]	[0]	[5]	[2]	[7]	[4]	[1]	[6]	[3]			LJ	
	[6]	[0]	[6]	[4]	[2]	[0]	[6]	[4]	[2]	[6]	[0]	[6]	[3]
	 L J							L 3		[7]	[0]	[7]	[5]
	[7]	[0]	[1]	[O]	[G]	[4]	[3]		[1]	[8]	[0]	[8]	[7]

9. **Theorem** (8).

The following statements hold:

- (a) For any $u, v \in \mathbb{Z}_n$, $u \times v = v \times u$.
- (b) For any $u, v, w \in \mathbb{Z}_n$, $(u \times v) \times w = u \times (v \times w)$.
- (c) There exists some $e \in \mathbb{Z}_n$, namely e = [1], such that $e \times u = u \times e = u$.
- (d) For any $u, v, w \in \mathbb{Z}_n$, $u \times (v+w) = (u \times v) + (u \times w)$ and $(u+v) \times w = (u \times w) + (v \times w)$.

Proof. Exercise. (Imitate the argument for Theorem (5).)

Remark on terminologies.

Because of Statement (c), it is natural for us to write [1] as 1_n .

 $(\mathbb{Z}_n, +, \times)$ is a **commutative rings with unity** with additive identity 0_n and multiplicative identity 1_n .

10. For the moment, assume n is a prime number. Write n = p.

Lemma (9).

For any $x \in \mathbb{Z}$, if x is not divisible by p then there exists some $y \in \mathbb{Z}$ such that $xy \equiv 1 \pmod{p}$ and y is not divisible by p.

Theorem (10).

Let $u \in \mathbb{Z}_p$. Suppose $u \neq 0_p$.

Then there exists some unique $v \in \mathbb{Z}_p \setminus \{0_p\}$ such that $v \times u = u \times v = 1_p$.

Corollary (11).

Let $u, v \in \mathbb{Z}_p$. Suppose $u \neq 0_p$ and $v \neq 0_p$.

Then there exists some unique $w \in \mathbb{Z}_p \setminus \{0_p\}$ such that $u \times w = v$.

Remarks on terminologies.

$$(\mathbb{Z}_p, +, \times)$$
 is a **field**.

 $(\mathbb{Z}_p, +, \times)$ is a finite field.

11. What if n is definitely not a prime number?

Theorem (12).

Suppose n is not a prime number.

Then there exist some $u, v \in \mathbb{Z}_n \setminus \{0_n\}$ such that $u \times v = 0_n$.

Remark.

Such elements u, v of $\mathbb{Z}_n \setminus \{0_n\}$ which satisfy $u \times v = 0_n$ are called **zero divisors**.

12. The result below holds whether n is a prime number or not.

Theorem (13).

$$\underbrace{1_n + 1_n + \dots + 1_n}_{n \text{ times}} = 0_n.$$

Proof.

By definition,
$$\underbrace{1_n + 1_n + \dots + 1_n}_{n \text{ times}} = \underbrace{[1] + [1] + \dots + [1]}_{n \text{ times}} = \underbrace{[1 + 1 + \dots + 1]}_{n \text{ times}} = [n] = 0_n.$$

Remark.

We do not obtain the integer 0 by adding up many copies of the integer 1 together.

The commutative ring with unity $(\mathbb{Z}_n, +, \times)$ is some mathematical object which possesses many properties common to $(\mathbb{Z}, +, \times)$, $(\mathbb{Q}, +, \times)$, but which is **decisively different** from them. (This is one of the starting points of MATH2070.)