1. We assume n € N\{0, 1} throughout this Handout.

Definitions.
(a) Let ¢,y € Z. z is said to be congruent to y modulo n if z — y is divisible by n.

We write © = y(mod n).

(b) Define E,, = {(x,y) | ,y € Z and © = y(mod n)}, and R, = (Z,Z, I,).
We call R,, the congruence modulo n relation on Z.

Remark. R, is an equivalence relation in Z.
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Definitions.

(a) For any © € Z, define [z] ={y € Z : (z,y) € E,}.
The set [z] is called the equivalence class of z under the equivalence relation
R,

(b) Define Z,, = {[z] | = € Z}.
Z.,, is called as the quotient of the set Z by equivalence relation R,.

Remark.

This ‘school-and-classes’ analogy’ is intended to help us see the intuitive idea about the
definitions above.

Read:
e ‘integer x’ as ‘student x’,
e ‘the set of all integers Z’ as
‘the school Z (whose elements are exactly all the students of the school)’,
o (z,y) € E, (or equivalently
‘. = y(mod n)’) as ‘student x is in the same class as student y’.



2. Lemma (1).
Let z,y € Z. The following statements are equivalent:

(a) x —y=qn for some q € Z. (d) ye€lz]
(b)  x = y(mod n). (e) =z €yl
(¢) (z,y) € En. | () [z =[y]-

Proof.  Exercise. (This is nothing but a tedious game of words.)

Remark.
How to interpret Lemma (1) in terms of the ‘school-and-classes’ analogy’?

Recall that ‘(z,y) € F, is read as ‘student x is in the same class as student y’. Now:

o ‘y € [z reads:

Stk 5 am demek o the 1k o Al elomndles o Sdochy

e ‘x € [y| reads
Stedek x5 om ddemet o/& the $&k OAO M damtes o Hindet g .

o ‘[z] = [y]’ reads:
T 2K o ol clomnites o sholk x b o Some er the st of S chmides AT )

Each of these is the same as ‘z is in the same class as 1’ .

/



Lemma (2).

For any = € Z, there exists some unique 7 € [[O n — 1] such that [z] = [r].
Proof. |

Let x € Z.

e [Uniqueness argument?]

|k stello, i)
B\vwm {7\] ;XS] O,J{ EJ * S:t] ,
7\«9« 5] = Ex] iﬂ

;“}‘fﬂ L Ehama L Y) S

e [Existence argumeﬁt.]
Aply [ Divsiee Algovithin:
e o Some, 91/ el suol. tlat
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.”"N. Lomna “-\ ) L’J‘i gﬂ\& S'(,e S:O \"—‘] Wt Z\MQ/
) = T O <\S—'t\§\a|<lr\
| - ’ Thee  (s-t)zo. (Why?) Hemee s=-1
Remark. |

How to interpret Lemma (2) in terms of the ‘school-and- classes’ analogy’”
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3. Theorem (3).

The following statements hold:

1) For any u € Z,, u # ().

N{x€Z:xcuforsomeucZ,} =17
)

3) For any u,v € Z,, exactly one of the following statements hold:
(3a) u =wv. (3b) unwv=>0.

AT N TR N

Remark.

How to interpret Theorem (3) in terms of the ‘school-and-classes” analogy’”

(0) The classes [0], [1],-- -, [n — 1] are Q/)q&c‘flj ol €he clowes o the tehel 7 b
(1) In every class in the school, thoe 3 ak (eaR one Awde
(2) Lunch break; all classes dismissed. Bof W? sadek s il somenhere nthe sohal Compi,

(3) Any two copies of ‘class namelists’ in the school are ¢it her (OQQLMQ/ v (‘ff@wj O(J;J’m‘»:k :



Theorem (3).

The following statements hold:

(0) Z, = {[0], 1], ,[n— 2], [n — 1]}.

(1) For any u € Z,, u # .

2){z €Z :z € for someu € Ly} =7

(3) For any u,v € Z,, exactly one of the following statements hold:
(3a) u=wv. (3b)unwv=70.

Proof.

0) Pick cZ, |
v BI; —taﬁc Zé?fh*m\ f?( ZW’ thee exily sme we /. sl dak Mt[XI_
Bj emm o <l) T(’\M ey Seme Y € [O n- |]] &\Mo{\f;l\p\* Exj:'{‘(l _
“Then Jov -tks veflo,n-, we het us [x]=C0v]) . &
1) Pick any v € Z,,
( ) Bj ‘fl\f’— %’M" OeY Zk/ -CZ\&L @XGQX Sme xﬁz Swif[\cj- G = {x}

By Kﬂ@m‘uvﬁj («,x)E€E, . By lemma (), x€[x]=u Thee “#?S -
(2) Write U = {zx € Z : = € u for some u € Z,}. By definition, we have U C Z.

_,B‘Jg Z) T e -(:LJZCU? ]

C/L\UJK FOYO/«) J\)J&t X, ‘(Jj x€/ thee xeU’

?\CL o) J\’JQC‘( X . SWM& XCZ We hae X€B1 M {x}é-f%_kw) /\ xEd,
¥ { .



- Theorem (3).
The following statements hold:

(0) Zn = {[0, 1], ,[n — 2], [n — 11} | ¢ Hk|~k [t
(1) For any u € Z,, u # 0. ( T:Fr ; C%
2){x €Z:x € wuforsomeuc,} =24 i%_—_—'[\f: D
(3) Fo exactly one of the following statements h@ ( F|F|T | F

(3b) uNwv = 0. - 2 ,
Proof. | = i i -

' (3) Pick any u,0 € Z,. Jubakte dehre 2 [H=0 AR 2H] 1 e Wby 2 T, Hhle 7]
(A) Suppose u = v.

Thew WOV = wWOU=wFP by Sttt (1)
(B) Suppose u Nwv # (. | |

?ICL Some EE WAV, We love € a«»\i eV |

9&\(& \&ezh f[,\w/ Py S utd X€Z Swél\ J\ﬁ W= [X]

Sikea \Jelh: tHee 20Xy Some Yy % JML 76[\0* V“:’[*;]

wi \’\‘U& T GU\'[%]. T'nf/r; LA = 1 )J
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Theorem (3).

The fo]]owing statements hold:

(1) For any u € Zn, u £ ().

2){x €Z:x €wu for someuw e Z,} =7Z
(3)

3) For any u,v € Z,, exactly one of the following statements hold:
(Sa)U—U. (3b) unwv=10.

Remark on terminologies.

(a) Z is partitioned into the n pairwise disjoint non-empty sets [0], [1], ..., [n — 2], [n — 1].
We may simply refer to the set (of sets) Z,, as a partition of Z.

(b) Because such a partition of Z arises ultimately from the equivalence relation R, we refer
to Z,, as the quotient of Z by the equivalence relation R,.

You will encounter more of these ideas and terminologies (and ‘natural consequences’ of
these ideas, such as the rest of this Handout) in advanced courses (for example, algebra and

topology).
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( ‘t\'\‘(u\/\,’(lfxt) de\ oo y
4. Theorem (4). | '( ‘}J(;\c T T by % (kY TE ik-&i:( W’K(’/AW U@Z.
(

Define rBd\ @ tho o wd\)\—o%:.}\z& B kj?w'{xm?

Go = { (w,0),w) | G2 € En 20 S P 4
o = VWYL there exist k, ¢ € Z such that u=[k],v=[f] and w =[k+£] [

-— — e

Define o = (Z,,°, Z,, G,,).
« is a function from Z,* to Z,,.
Proof.

Note that Gy C (Z,2) x Z,. Hence « is a relation from from Z, to Z,.
(E) [Is each ‘input pair’ ‘assigned’ to at least one ‘output’ by a7
i@/ﬂ,\ajg ' Fer 0~ w \/le\, tloe oniRs some \,\/EZ_V\ Sud_ theX (u,v)/u)e G& ]
“Prck Qm) w \IEYL»\
Thee ok Some k, Qe sud A2k e LE] o dl v {/Q]
Tov theoe k067wt bae befel . DeFne vkl ueboe wel,
%7 Ok@@‘”*“- 0/5/ G e bave. (i), W) €A5ny

(U) [Is each ‘input pair’ ‘assigned’ to at most one ‘output’ by ]

a



Theorem (4).
Define

62 ={ (o). u)

Define o = (Z,,%, Z,,, G,,).
« is a function from Z,* to Z,,.

Proof.
Note that G, C (Zn2) x Z,. Hence « is a relation from from Z,,° to Z,,.

u,v,w € 4, and
there exist k,£ € Z such that uw = [k],v =[(] andw =k +¢] |~

(E) [Is each ‘input pair’ ‘assigned’ to at least one ‘output’ by a? Yes.|
(U) [Is each ‘input pair’ ‘assigned’ to at most one “output’ by o
[O/L\U/l( : ﬁf‘y“"\ SASRVIAN CZ _S ((V\V> w> <» o ((u V) bW)CC-) —tZ\& \/J‘LJ/,I
(C,l; omy W,V W, W GZ Swwm (Cu, v), W)e <D O«J{(@\ V), w’)éﬁ;
E\\M(@/V)/w)e(w T‘\@%@Xd( somg, 6] swck dhak ws(E) v=L0] i LE2].
Sace (o) €G,  dhew ek Swe UL’@Z Sud that w=[E], ve me L]
\,\)e, L‘CW{/ [kj e U< ] T P fi = si. \‘?&5&*-\“,! 7 ;uvw\o»,ff.
We ke CXT=V=T07) Tl L2 L (mekn) by Lemme (1)
kK A -L are mmu . oy (ke>- <L+!<’> 5 ol mwu b)
7‘\%%0’\1« k) =L+ L (MV\> He,vxce, W fzw,_ |= (K *;N) g



Theorem (4).
Define

G ={ (W) v

Define a = (Z,%, Z,,, Gy,).
o is a function from Z,,% to Z,,.

Proof.
Note that G, C (Zf) x Z,. Hence « is a relation from from Z,° to Z,.

u,v,w € 4, and
there exist k,¢ € Z such that u = [k],v=[(] and w=[k+{] |~

(E) [Is each ‘input pair’ ‘assigned’ to at least one ‘output’ by a? Yes.|
(U) [Is each ‘input pair’ ‘assigned’ to at most one ‘output’ by a? Yes ]

[t follows that o is a function from Z,* to Z,,.

Remark.

The function « is called addition in Z,, because of its resemblance with the function
‘addition’ for other more familiar mathematical objects, such as numbers and matrices.

From now on, we write a(u, v) as u + v, and call it the sum of u,v.
gj -(L\L A@]vf‘&\d\\ Ojf addition zt\ )
Moot k L€l we b DRI+ TRz LK, 0030 < [h+03,

¢
Thd L\Nﬂw'\s ‘th. APPOAS
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Tkl1+ £ =Ck-

5. Addition table for ‘small’ values of n:

t
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Addition in Z4

Addition in Z5
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Addition in Z,
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Addition table for ‘small’ values of n:

Addition in Zg

Addition in Zg

00 S = F B O I~
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6. Theorem (5).
(Z,,+) is an abelian group.
- Proof.

o A tivit 7 U\LOL v e v, \/\)QZ C\/&*\/>‘\’ T T TN <\/‘f\,\)> ]
[Lgioci,lx\//lgjezi There exisk some £.2 jine ] Suck thak Wkl v=[2] ond W= [w]

Ther. (u+V)+W = (CE3+TA)40m] = The Q1In]
= [k +nT= [kt m]= . = M(\/w)
o [Qommutativity?] E MM’/JK . Tov om g Vel , WiV = \/er]

O USITAN, 7 vt wtk Tond v 27,

Thee exik sme kLol

SR T = L’\]‘ﬂ A= [\‘ /‘1--D~r<j Sl =0 S,
e [Existence of identity element?] | ¢)eck @ Thew exKs some Q/QZ sud. ik ]

DQ:SV\Q/ 00{01 -Ewam \LQZ_ okl = by = @i,
Pick any w7, Thow exs some el e [ k]

Thon WFOn= [k14L03=Ck+ol=fkl=w, Ao, Ontu= - = u.,

e [Existence of inverse element?] Checle : For o o~y wey . ", “there Q/x\‘jtg Some. VQZ N]
B wely Sweh st utv = O = vew

Thore exiks Some kel sud thak w{ L), Nate thik kel .
Do v=I-k1. The wrv= LETLT =Theekl=[0] -0, Mso, vru=.. = 0,
It follows that (Z,,+) is an abelian group.

& ]



Corollary (6).

For any w,v € Z,, there exists some unique w € Z,, such that u + w = v.

Proof.
Let u,v € Z,,.

e [Existence argument.]

By Theaon(5) +, thex exiths some L, ok theX wtl =0, = tu.

)e;jm W o= 14V, Ej o@éﬂ\ﬂ’[m, veEg

/(L\&\ u+ W= +t (ng) = (LA—rt>+\/ 'fr O v jr— R
[theoom(s)) Cthent )} Tthenen(s]]
e [Uniqueness argument. |
[ 2k W, W/EZ_V\. SWWM’ Wt W=V ord \u—u/:v.

The  wrw= V= utw’

WEO;\J ?;(Jc+u)+w }- t o+ (ut W) = ttutw)

=
[Fthen e~ (5) )

Remark. Here we ‘subtract v from v’: w is the difference of v from w, and we write
w = v — u. We write 0, — u as —u; it is the unique (additive) inverse of u.
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7. Theorem (7).
Define

Gu={ (w,0)0

Define i = (Z,,°, Z,,, G,.).

11 is a function from Z,* to Z,.

o~ — ~

~ — et O o T N, =2 i il —— — . o ——

u,v,w € 4, and

there exist k,¢ € Z such that u = [k],v = [¢] and w = |k/] }

Proof. Exercise. (Imitate the argument for Theorem (4).)

Remark. The function y is called multiplication in Z,, because of its resemblance
with the function ‘multiplication’ for other more familiar mathematical objects, such as
numbers and matrices.

From now on, we write u(u,v) as u x v, and call it the product of u, v.
B7 the o(eéwhﬁlm\ (/3 mektiplicekine A /.

dhoneser kL, vt hat Eu?mz/«(zu,w%u % 1]
~hi kaﬂm (LZ.K' et e
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8. Multiplication table for ‘small’ values of n: o L\J\ag%s "/

Multiplication in Z, Multiplication Z3 Multiplication in Z, Multiplication in Zs
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Multiplication table for ‘small’ values of n:

Multiplication in Zg

Multiplication in Zg
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9. Theorem (8).
The following statements hold:
(a) For any u,v € Z,, u X v =10 X 1.
(b) For any u,v,w € Z,, (u X v) X w=1u X (v X w).
(c) There exists some e € Z,, namely e = [1], such that e X u = u X e = u.
(d) For any w,v,w € Z,, ux (v+w) = (uxv)+(uxw) and (u+v) xw = (uXw)+(vXW).

Proof  Exercise. (Imitate the argument for Theorem (5).)

Remark on terminologies.
Because of Statement (c), it is natural for us to write [1] as 1,,.

(Z,,,+, xX) is a commutative rings with unity with additive identity 0, and multi-
plicative identity 1,,.



10. For the moment, assume n is a prime number. Write n = p.

Lemma (9).

For any x € Z, if x is not divisible by p then there exists some y € /Z such that
zy = 1(mod p) and y is not divisible by p.

Theorem (10).
Let w € Z,. Suppose u # Oy.

Then there exists some unique v € Z,\{0,} such that v X u=u x v = 1,,.

Corollary (11).
Let uw,v € Z,. Suppose u # 0, and v # 0,. |
Then there exists some unique w € Z,\{0,} such that u x w = v.

Remarks on terminologies.
(Z,,+, x) is a field.
(Z,,+, x) is a finite field .




11.

12.

What if n is definitely not a prime number?

Theorem (12).

Suppose n is not a prime number.

Then there exist some u,v € Z,\{0,} such that u x v = 0.
Remark.

Such elements u, v of Z,\{0,} which satisfy u x v = 0,, are called zero divisors.

The result below holds whether n is a prime number or not.

Theorem (13).
Li+1, 4+ +1, =0,

n  times

Proof.
Bydeﬁllition,ln+1n+---+1@:L1]+[1]+'°°—|—[112 l+1+4---41=[n] =0,
Remark. |

We do not obtain the integer 0 by adding up many copies of the integer 1 together.

The commutative ring with unity (Z,, 4+, x) is some mathematical object which possesses

many properties common to (Z,+, x), (Q, +, x), but which is decisively different from
them. (This is one of the starting points of MATH2070.)



