
1. Definitions.
(a) Let H,K,L be sets.

The ordered triple (H,K,L) is called a relation from H to K if L is a subset of
H ×K.
The set L is called the graph of this relation.

(b) Let A,G be sets.
The ordered triple (A,A,G) is called a relation in A if G is a subset of A2.
The set G is called the graph of this relation.

Remarks.
(1) Every relation in A is a relation from A to A.
(2) Every function from H to K is necessarily a relation from its domain H to its range K.

However, a relation from H to K is not necessarily a function from H to K.
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2. Definitions.
Let A be a set, and R be a relation in A with graph G.

(a) R is said to be reflexive if the statement (ρ) holds:
(ρ): For any x ∈ A, (x, x) ∈ G.

(b) R is said to be symmetric if the statement (σ) holds:
(σ): For any x, y ∈ A, if (x, y) ∈ G then (y, x) ∈ G.

(c) R is said to be transitive if the statement (τ ) holds:
(τ ): For any x, y, z ∈ A, if ((x, y) ∈ G and (y, z) ∈ G) then (x, z) ∈ G.

Remarks.
(1) The notions of reflexivity, symmetry, and transitivity are ‘logically independent’ of each

other.
(2) How are non-reflexivity, non-symmetry, and non-transitivity formulated? (What are the

respective negations of the statements (ρ), (σ), (τ )?)

3. Definition.
Let A be a set, and R be a relation in A with graph G.
R is called an equivalence relation in A if R is reflexive, symmetric and transitive.
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4. Primordial example of equivalence relations:
equality (for elements) in a set.
Let B be a set.
The statements below hold, due to properties of the equality symbol ‘=’:

(ρ∗): For any x ∈ B, x = x.

(σ∗): For any x, y ∈ B, if x = y then y = x.

(τ ∗): For any x, y, z ∈ B, if (x = y and y = z) then x = z.

Define G = {(x, y) | x, y ∈ B and x = y}.
By definition, for any x, y ∈ B, x = y iff (x, y) ∈ G.

How do the statements (ρ∗), (σ∗), (τ ∗) translate?
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Primordial example of equivalence relations:
equality (for elements) in a set.
Let B be a set.
The statements below hold, due to properties of the equality symbol ‘=’:

(ρ∗): For any x ∈ B, x = x︸ ︷︷ ︸
(x, x) ∈ G

.

(σ∗): For any x, y ∈ B, if x = y︸ ︷︷ ︸
(x, y) ∈ G

then y = x︸ ︷︷ ︸
(y, x) ∈ G

.

(τ ∗): For any x, y, z ∈ B, if ( x = y︸ ︷︷ ︸
(x, y) ∈ G

and y = z︸ ︷︷ ︸
(y, z) ∈ G

) then x = z︸ ︷︷ ︸
(x, z) ∈ G

.

Define G = {(x, y) | x, y ∈ B and x = y}.
By definition, for any x, y ∈ B, x = y iff (x, y) ∈ G.

Because of (ρ∗), (σ∗), (τ ∗), we conclude that (B,B,G) is an equivalence relation.
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5. What motivates the notion of equivalence relations?
Let R be an equivalence relation in A with graph G.
Suppose we agree to write x ∼ y exactly when (x, y) ∈ G.
Then we may think of the equivalence relation R in the set A in a less formal way:
it is some kind of mathematical object represented by the symbol ∼, for which the following
statements hold simultaneously:

(ρ): For any x ∈ A, x ∼ x.
(σ): For any x, y ∈ A, if x ∼ y then y ∼ x.
(τ ): For any x, y, z ∈ A, if (x ∼ y and y ∼ z) then x ∼ z.

An equivalence relation R in a set A can be thought of as some ‘weaker kind of equality’
for elements of A:
• Even though x, y may be different elements of A, we dis-regard their distinction

‘through the lens’ of the equivalence relation R exactly when

(x, y) belongs to graph of R.
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6. Theorem (1).
Let A,B be sets, and f : A −→ B be a function.
Define

Ef = {(x, y) | x, y ∈ A and f (x) = f (y).},
and Rf = (A,A,Ef).
Then Rf is an equivalence relation in A, with graph Ef .

Remark on terminology.
Rf is called the equivalence relation in A induced by the function f .

Further remark.
Through the equivalence relation Rf , we dis-regard their distinction between two distinct
elements x, y of A exactly when f (x) = f (y).
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7. Definition.
Let A be a set, and Ω be a subset of P(A).
Ω is called a partition of A if the statements (N), (O), (P) hold:

(N) For any S ∈ Ω, S ̸= ∅.
(O) {x ∈ A : x ∈ S for some S ∈ Ω} = A.
(P) For any S, T ∈ Ω, exactly one of the statements (P1), (P2) holds:

(P1) S = T . (P2) S ∩ T = ∅.

Remarks.
(a) The set {x ∈ A : x ∈ S for some S ∈ Ω} is called the generalized union of the set Ω

of subsets of A, and is often denoted by
⋃
S∈Ω

S.

The statement (O) can be re-written as ‘
⋃
S∈Ω

S = A’.

(b) Two sets K,L are said to be disjoint if K ∩ L = ∅.
The statement (P) can be re-written as ‘The elements of Ω are pairwise disjoint subsets
of A’.
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8. Theorem (2).
Let A be a set, and Ω be a partition of A.
Define

EΩ =

{
(x, y)

∣∣∣∣∣ x, y ∈ A, and there exist some S ∈ Ω

such that x ∈ S and y ∈ S.

}
,

and RΩ = (A,A,EΩ).
Then RΩ is an equivalence relation in A, with graph EΩ.

Remark on terminology.
RΩ is called the equivalence relation in A induced by the partition Ω.
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9. Theorem (3).
Let A be a set, and R be an equivalence relation in A with graph E.
For any x ∈ A, define R[x] = {y ∈ A : (x, y) ∈ E}.
Define ΩR = {S ∈ P(A) : S = R[x] for some x ∈ A}.
Define qR : A −→ ΩR by qR(x) = R[x] for any x ∈ A.
Then the statements below hold:

(a) ΩR is a partition of A.
(b) qR is a surjective function.
(c) The equivalence relation RΩR

in A induced by the partition ΩR is R itself.
The equivalence relation Rq

R
in A induced by the function qR is R itself.
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Remark on terminology.
Note that ΩR is a special partition of A induced by the equivalence relation R, and qR is a
special surjective function with domain A induced by the equivalence relation R.

(a) For any x ∈ A, the set R[x] is called the equivalence class of x under the equiv-
alence relation R.

(b) ΩR is called the quotient in A by the equivalence relation R, and is denoted by
A/R.

(c) qR is called the quotient mapping of the equivalence relation R.

Further remark.
An equivalence relation can be visualized through its quotient and its quotient mapping, in
the sense that the information about the equivalence relation is carried in full in both its
quotient and its quotient mapping. This is the point of the equalities ‘RA/R = R = Rq

R
’.
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