1. Definition.

Let A, B be sets. A is said to be of cardinality equal to B if there is a bijective function from A to B. We write $A \sim B$.

Remark on notation. Where A is not of cardinality equal to B, we write $A \neq B$.

2. Theorem (I). (Properties of \sim .)

- (1) Let A be a set. $A \sim \emptyset$ iff $A = \emptyset$.
- (2) Let x, y be objects. $\{x\} \sim \{y\}$.
- (3) Let A, B, C be sets. The following statements hold:
 - (3a) $A \sim A$.
 - (3b) Suppose $A \sim B$. Then $B \sim A$.
 - (3c) Suppose $A \sim B$ and $B \sim C$. Then $A \sim C$.
- (4) Let A, B, C, D be sets. The following statements hold:
 - (4a) Suppose $A \sim C$ and $B \sim D$. Then $A \times B \sim C \times D$.
 - (4b) Suppose $A \sim C$. Then $\mathfrak{P}(A) \sim \mathfrak{P}(C)$.
 - (4c) Suppose $A \sim C$ and $B \sim D$. Then $Map(A, B) \sim Map(C, D)$.

Remarks.

- According to (3), ~ defines an equivalence relation in the power set of any given set.
- In (4), Map(A, B) is the set of all functions from A to B.

3. Example (α).

 $\mathbb{N} \sim \mathbb{N} \setminus \{0\}.$

(a) Idea.

This is the 'blobs-and-arrows' diagram for a certain bijective function, which we denote by f here, but how to write down this f explicitly?

It is the function $f: \mathbb{N} \longrightarrow \mathbb{N} \setminus \{0\}$ whose graph is $\{(x, x+1) \mid x \in \mathbb{N}\}$ respectively.

Its 'formula of definition' is given by f(x) = x + 1 for any $x \in \mathbb{N}$.

(b) Formal argument.

Let $F = \{(x, x+1) \mid x \in \mathbb{N}\}.$

(Very formally presented, we have $F = \{p \mid \text{There exists some } x \in \mathbb{N} \text{ such that } p = (x, x + 1).\}.$)

Note that $F \subset \mathbb{N} \times (\mathbb{N} \setminus \{0\})$.

- Define $f = (\mathbb{N}, \mathbb{N} \setminus \{0\}, F)$.
- f is a relation from N to $\mathbb{N} \setminus \{0\}$.

Now we proceed to verify that f is a bijective function:

- * Pick any $x \in \mathbb{N}$. Take y = x + 1. Since $x, 1 \in \mathbb{N}$, we have $y \in \mathbb{N}$. Moreover, $y = x + 1 \ge 0 + 1 > 0$. Then $y \in \mathbb{N} \setminus \{0\}$. By definition, $(x, y) \in F$.
- * Pick any $x \in \mathbb{N}$. Pick any $y, z \in \mathbb{N} \setminus \{0\}$. Suppose $(x, y) \in F$ and $(x, z) \in F$. Since $(x, y) \in F$, there exists some $u \in \mathbb{N}$ such that (x, y) = (u, u + 1). Since $(x, z) \in F$, there exists some $v \in \mathbb{N}$ such that (x, z) = (v, v + 1). Now we have u = x = v. Then y = u + 1 = v + 1 = z.

- * Hence $f : \mathbb{N} \longrightarrow \mathbb{N} \setminus \{0\}$ is indeed a function, given by f(x) = x + 1 for any $x \in \mathbb{N}$.
- * Pick any $y \in \mathbb{N}\setminus\{0\}$. Take x = y 1. Since $y, 1 \in \mathbb{Z}$, we have $x \in \mathbb{Z}$. Since $y \ge 1$, we have $x = y 1 \ge 0$. Then $x \in \mathbb{N}$. By definition, f(x) = x + 1 = (y - 1) + 1 = y.
- * Pick any $w, x \in \mathbb{N}$. Suppose f(x) = f(w). Then x 1 = w 1. Therefore w = x.
- * It follows that f is a bijective function from N to $N \setminus \{0\}$.

4. Example (β) .

$\mathbb{N} \sim \mathbb{Z}$.

(a) Idea.

(b) Formal argument.

Let $F_1 = \{(2x, x) \mid x \in \mathbb{N}\}, F_2 = \{(2x - 1, -x) \mid x \in \mathbb{N} \setminus \{0\}\}, \text{ and } F = F_1 \cup F_2.$ Note that $F \subset \mathbb{N} \times \mathbb{Z}$. Define $f = (\mathbb{N}, \mathbb{Z}, F)$. f is a relation from \mathbb{N} to \mathbb{Z} .

Now verify that f is a bijective function. (Fill in the details. Theorem (II) may help.) The 'formula of definition' of the bijective function $f : \mathbb{N} \longrightarrow \mathbb{Z}$ is given by

$$f(x) = \begin{cases} \frac{x}{2} & \text{if } x \text{ is even} \\ -\frac{x+1}{2} & \text{if } x \text{ is odd} \end{cases}$$

5. 'Glueing Lemma'.

Theorem (II). ('Baby version' of 'Glueing Lemma').

Let C, C', D, D' be sets, and g = (C, D, G), g' = (C', D', G') be bijective functions. Suppose $C \cap C' = \emptyset$ and $D \cap D' = \emptyset$. Then $(C \cup C', D \cup D', G \cup G')$ is a bijective function.

Corollary (III).

Let C, C', D, D' be sets. Suppose $C \sim D$ and $C' \sim D'$. Also suppose $C \cap C' = \emptyset$ and $D \cap D' = \emptyset$. Then $C \cup C' \sim D \cup D'$.

Theorem (II) and Corollary (III) may be extended to the situation for infinite sequences of sets and generalized unions: **Theorem (IV). ('Glueing Lemma'.)**

Let A, B be sets. Let $\{C_n\}_{n=0}^{\infty}$, $\{D_n\}_{n=0}^{\infty}$ be infinite sequences of subsets of A, B respectively. Let $\{G_n\}_{n=0}^{\infty}$ be an infinite sequence of subsets of $A \times B$. Suppose $\{(C_n, D_n, G_n)\}_{n=0}^{\infty}$ is an infinite sequence of bijective functions. Suppose that for any $j, k \in \mathbb{N}$, if $j \neq k$ then $C_j \cap C_k = \emptyset$ and $D_j \cap D_k = \emptyset$. Then $\begin{pmatrix} \bigcup \\ \bigcup \\ n=0 \end{pmatrix} = D_n, \bigcup \\ n=0 \end{pmatrix}$ is a bijective function.

Corollary (V).

Let A, B be sets. Let $\{C_n\}_{n=0}^{\infty}, \{D_n\}_{n=0}^{\infty}$ be infinite sequences of subsets of A, B respectively. Suppose that for any $n \in \mathbb{N}, C_n \sim D_n$. Also suppose that for any $j, k \in \mathbb{N}$, if $j \neq k$ then $C_j \cap C_k = \emptyset$ and $D_j \cap D_k = \emptyset$. Then $\bigcup_{n=0}^{\infty} C_n \sim \bigcup_{n=0}^{\infty} D_n$.

6. Example (γ) .

 $\mathbb{N} \sim \mathbb{N}^2$.

Remark. Hence, by Theorem (I) and the result in Example (β), we have $\mathbb{N}^m \sim \mathbb{N}$ and $\mathbb{Z}^m \sim \mathbb{Z}$ for any $m \in \mathbb{N}^*$.

(a) Idea.

Break up each of N, N^2 into many many parts, match the parts with bijective functions, and then 'glue up' these bijective functions to obtain a bijective function from N to N^2 .

There are many ways to do it.

(b) Correspondence 1.

0	1	2	3	4	5	6	7	8	
\downarrow									
(0,0)	(1,0)	(1, 1)	(0,1)	(2,0)	(2, 1)	(2, 2)	(1,2)	$ \begin{smallmatrix} 8 \\ \downarrow \\ (0,2) \end{smallmatrix} $	

We have constructed the bijective function $f_1 : \mathbb{N} \longrightarrow \mathbb{N}^2$ below which 'matches' the respective entries at the corresponding positions of the following 'infinite square-arrays' to each other:

0	1	4	9	16	25			(0,0)	(1, 0)	(2, 0)	(3, 0)	(4, 0)	(5, 0)	
3	2	5	10	17	26							(4, 1)		
8	$\overline{7}$	6	11	18	27			(0,2)	(1, 2)	(2, 2)	(3, 2)	(4, 2)	(5, 2)	
15	14	13	12	19	28			(0,3)	(1, 3)	(2, 3)	(3,3)	(4, 3)	(5, 3)	
			21					(0,4)	(1, 4)	(2, 4)	(3, 4)	(4, 4)	(5, 4)	
35	34	33	32	31	30			(0,5)	(1, 5)	(2, 5)	(3,5)	(4, 5)	(5, 5)	
:	:	:	:	:	:	۰.		:	:	•	:	•	•	•.
•	•	•	:	•	•	·		:	:	:	:		:	•

(c) Correspondence 2.

We have constructed the bijective function $f_2 : \mathbb{N} \longrightarrow \mathbb{N}^2$ below which 'matches' the respective entries at the corresponding positions of the following 'infinite square-arrays' to each other:

0	1	3	6	10	15			$ (0,0) \rangle$	(1, 0)	(2, 0)	(3, 0)	(4, 0)	(5, 0)	
2	4	7	11	16	22		1	(0,1)	(1, 1)	(2, 1)	(3, 1)	(4, 1)	(5, 1)	
5	8	12	17	23	30			(0,2)	(1, 2)	(2, 2)	(3, 2)	(4, 2)	(5, 2)	
9	13	18	24	31	39			(0,3)	(1,3)					
14	19	25	32	40	49			(0, 4)	(1, 4)			(4, 4)		
20	26	33	41	50	60							(4, 5)		
							1							
÷	:	:	÷	÷	:	·			÷	÷	÷	÷	:	·

(d) Correspondence 3.

Define $g: \mathbb{N}^2 \longrightarrow \mathbb{N} \setminus \{0\}$ by $g(x, y) = 2^y (2x+1)$ for any $x, y \in \mathbb{N}$. g is a bijective function. g sets up the following 'exact correspondence' from \mathbb{N}^2 to $\mathbb{N} \setminus \{0\}$:

(0, 0)	(1, 0)	(2, 0)	(3, 0)	(4, 0)	(5, 0)			1	3	5	$\overline{7}$	9	11	
(0, 1)	(1, 1)	(2, 1)	(3, 1)	(4, 1)	(5, 1)			2	6	10	14	18	22	
(0, 2)	(1, 2)	(2, 2)	(3, 2)	(4, 2)	(5, 2)			4	12	20	28	36	44	
(0, 3)	(1, 3)	(2, 3)	(3,3)	(4, 3)	(5, 3)			8	24	40	56	72	88	
(0, 4)	(1, 4)	(2, 4)	(3, 4)	(4, 4)	(5, 4)		ĺ ĺ	16	48	80	112	144	176	
(0, 5)	(1, 5)	(2, 5)	(3, 5)	(4, 5)	(5, 5)			32	96	160	224	288	352	
•	•	•	•	•	•			:	:	:	:	:	:	•.
:	:	:	:	:	:	••		·	:	:	:	:	:	••

Define $h : \mathbb{N} \setminus \{0\} \longrightarrow \mathbb{N}$ by h(w) = w - 1 for any $w \in \mathbb{N} \setminus \{0\}$. h is a bijective function. Now $h \circ g$ is a bijective function from \mathbb{N}^2 to \mathbb{N} , given by $(h \circ g)(x, y) = 2^y(2x + 1) - 1$ for any $x, y \in \mathbb{N}$.

7. Example (δ) .

Suppose I is an interval with more than one point. Then $I \sim \mathbb{R}$.

- Outline of argument:
 - (a) Suppose I is 'finite at both ends'. Deduce:
 (a1) I~[0,1] if I is closed.

- (a2) $I \sim [0, 1)$ if I is half-closed-half-open.
- (a3) $I \sim (0, 1)$ if I is open.
- (b) Suppose $I \neq \mathbb{R}$ and I is not 'finite at both ends'. Deduce:
 - (b1) $I \sim [0, +\infty)$ if I is closed.
 - (b2) $I \sim (0, +\infty)$ if I is open.
- (c) Deduce that $[0,1] \sim [0,1)$. Similarly deduce that $[0,1) \sim (0,1)$.
- (d) Deduce that $(0,1)\sim(0,+\infty)$. Similarly deduce that $[0,1)\sim[0,+\infty)$.
- (e) Deduce that $(0,1) \sim \mathbb{R}$.
- Respective arguments for (a), (b): Make use of 'linear functions'. Respective arguments for (d), (e): Make use of 'rational functions'. Argument for (c)? This is non-trivial.

Argument for (c):

• Idea.

[0,1) is almost the whole of [0,1] except that it 'misses' the point 1. Try to 'modify' the identity function from [0,1] to [0,1] to get a bijective function from [0,1] to [0,1].

• Trick.

Dig many many holes in [0,1], [0,1) at identical positions so that after this digging, what remain of these two sets are the same set.

(But what to do with the 'debris'? Don't throw them away.)

Take $H = \left\{ \frac{1}{2^n} \mid n \in \mathbb{N} \right\}$. It is the set of all terms of the strictly decreasing infinite sequence $\left\{ \frac{1}{2^n} \right\}_{n=0}^{\infty}$ in [0,1]. Except its zero-th term, every term is in [0,1).

Now draw the 'blobs-and-arrows diagram' as described here

- * Match 1 in [0,1] with $\frac{1}{2}$ in [0,1). Match $\frac{1}{2}$ in [0,1] with $\frac{1}{4}$ in [0,1). Match $\frac{1}{4}$ in [0,1] with $\frac{1}{8}$ in [0,1). ... Match $\frac{1}{2^{n}}$ in [0,1] with $\frac{1}{2^{n+1}}$ in [0,1). Match $\frac{1}{2^{n+1}}$ in [0,1] with $\frac{1}{2^{n+2}}$ in [0,1). Et cetera.
- * Now note that $[0,1] \setminus H = [0,1] \setminus H$. So we match these two sets with the identity function.

 $\bullet \ \ Formal \ argument.$

Define $H = \left\{ \frac{1}{2^n} \mid n \in \mathbb{N} \right\}$. Note that $[0,1] \setminus H = [0,1] \setminus H$. Define $F_1 = \{(x,x) \mid x \in [0,1] \setminus H\}$ and $F_2 = \left\{ (x, \frac{x}{2}) \mid x \in H \right\}$ and $F = F_1 \cup F_2$. Verify that $f_1 = ([0,1] \setminus H, [0,1] \setminus H, F_1), f_2 = (H, H \setminus \{1\}, F_2)$ are bijective functions. (Fill in the detail.) Define f = ([0,1], [0,1], F). f is a relation. f is a bijective function according to the 'Glueing Lemma'.

• The argument for $[0,1)\sim(0,1)$ is similar.

8. Example (ϵ) .

Suppose A is a set. Then $\mathfrak{P}(A) \sim \mathsf{Map}(A, \{0, 1\})$.

(a) *Idea* (through one example).

Let $A = \{p, q, r\}$, where p, q, r are pairwise distinct. 'Light bulb' analogy:

* Imagine p, q, r are points on the plane, and a light bulb is fixed at each of p, q, r.

- * When a subset S of A is named, we turn on the lights at the corresponding elements of S. The light-bulbs at the elements of S go to 'on-state' (denoted by '1'). The 'light-bulbs' at the elements of A\S remain in the 'off-state' (denoted by '0'). This give an 'overall state' of the 'light bulbs' in A according to what S is.
- * For instance, when $S = \{p, q\}$, the lightbulbs at p, q are 'on' and that at r remains 'off'. We may represent this overall state in such a diagram:

- * Such a diagram is in fact a graph of the function from A to $\{0,1\}$.
- (When $S = \{0, 1\}$, the function concerned assigns p, q, r to 1, 1, 0 respectively.)
- $\ast \ Observation.$
 - Each individual element of $\mathfrak{P}(A)$ corresponds to exactly one 'overall state' of the "light-bulbs" in A. So we have a 'natural' 'exact correspondence' between the subsets of A and the functions from A to $\{0,1\}$ (as visualized by their respective graphs).

(b) Formal argument.

Suppose A is a set. Then $A = \emptyset$ or $A \neq \emptyset$. If $A = \emptyset$ then $(\mathfrak{P}(A) = \{\emptyset\}$ and $\mathsf{Map}(A, \{0, 1\}) = \{(\emptyset, \{0, 1\}, \emptyset)\})$. [Done.] From now on suppose $A \neq \emptyset$. For each $S \in \mathfrak{P}(A)$, define the function $\chi_S^A : A \longrightarrow \{0, 1\}$ by

$$\chi_S^A(x) = \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{if } x \in A \backslash S. \end{cases}$$

Define the function $f : \mathfrak{P}(A) \longrightarrow \mathsf{Map}(A, \{0, 1\})$ by $f(S) = \chi_S^A$ for any $S \in \mathfrak{P}(A)$.

Verify that f is bijective. (Fill in the detail.)

Remark. χ_S^A is called the characteristic function of the set S in the set A.

9. Example (ζ) .

 $Map(N, \{0, 1\}) \sim (Map(N, \{0, 1\}))^2$.

(a) Idea.

Each element of $Map(N, \{0, 1\})$ is a function from N to $\{0, 1\}$, and hence is an infinite sequence in $\{0, 1\}$.

Is there any natural 'exact correspondence' between infinite sequences in $\{0,1\}$ and ordered pairs of such sequences?

- * Just name any infinite sequence in $\{0,1\}$. For convenicence, call it $\{a_n\}_{n=0}^{\infty}$.
- * What do we obtain from $\{a_n\}_{n=0}^{\infty}$ by deleting all terms at 'odd positions?', without changing the ordering of the terms?
- * What do we obtain from $\{a_n\}_{n=0}^{\infty}$ by deleting all terms at 'even positions?', without changing the ordering of the terms?
- * Can we recover the original infinite sequence $\{a_n\}_{n=0}^{\infty}$ from the two resultant infinite sequences?

What can we say about the function from $Map(N, \{0,1\})$ to $(Map(N, \{0,1\}))^2$ defined by

 $(a_0, a_1, a_2, a_3, a_4, a_5, \cdots) \longmapsto ((a_0, a_2, a_4, \cdots), (a_1, a_3, a_5, \cdots))$

for each infinite sequence $\{a_n\}_{n=0}^{\infty}$ in $\{0,1\}$?

(b) Formal argument. Exercise.

Remarks. More generally, we have:

- (a) $\mathsf{Map}(\mathsf{N}, \{0, 1\}) \sim (\mathsf{Map}(\mathsf{N}, \{0, 1\}))^n$ for any $n \in \mathsf{N} \setminus \{0\}$.
- (b) $Map(N, B) \sim (Map(N, B))^n$ for any $n \in N \setminus \{0\}$, whenever B is a non-empty set.