
MATH1050 Sets of equal cardinality

1. Definition.

Let A,B be sets. A is said to be of cardinality equal to B if there is a bijective function from A to B. We write

A∼B.

Remark on notation. Where A is not of cardinality equal to B, we write A ∼
∣

∣ B.

2. Theorem (I). (Properties of ∼.)

(1) Let A be a set. A∼∅ iff A = ∅.

(2) Let x, y be objects. {x}∼{y}.

(3) Let A,B,C be sets. The following statements hold:

(3a) A∼A.

(3b) Suppose A∼B. Then B∼A.

(3c) Suppose A∼B and B∼C. Then A∼C.

(4) Let A,B,C,D be sets. The following statements hold:

(4a) Suppose A∼C and B∼D. Then A×B∼C ×D.

(4b) Suppose A∼C. Then P(A)∼P(C).

(4c) Suppose A∼C and B∼D. Then Map(A,B)∼Map(C,D).

Remarks.

• According to (3), ∼ defines an equivalence relation in the power set of any given set.

• In (4), Map(A,B) is the set of all functions from A to B.

3. Example (α).

N∼N\{0}.

(a) Idea.

N

0

1

2

...

n

n+ 1

...

N\{0}

...

1

2

3

...

n+ 1

n+ 2

...

...

This is the ‘blobs-and-arrows’ diagram for a certain bijective function, which we denote by f here, but how to
write down this f explicitly?

It is the function f : N −→ N\{0} whose graph is {(x, x+ 1) | x ∈ N} respectively.

Its ‘formula of definition’ is given by f(x) = x+ 1 for any x ∈ N.

(b) Formal argument.

Let F = {(x, x+ 1) | x ∈ N}.

(Very formally presented, we have F = {p | There exists some x ∈ N such that p = (x, x+ 1).}.)

Note that F ⊂ N × (N\{0}).

Define f = (N,N\{0}, F ).

f is a relation from N to N\{0}.

Now we proceed to verify that f is a bijective function:

∗ Pick any x ∈ N. Take y = x + 1. Since x, 1 ∈ N, we have y ∈ N. Moreover, y = x + 1 ≥ 0 + 1 > 0. Then

y ∈ N\{0}. By definition, (x, y) ∈ F .

∗ Pick any x ∈ N. Pick any y, z ∈ N\{0}. Suppose (x, y) ∈ F and (x, z) ∈ F . Since (x, y) ∈ F , there

exists some u ∈ N such that (x, y) = (u, u + 1). Since (x, z) ∈ F , there exists some v ∈ N such that

(x, z) = (v, v + 1). Now we have u = x = v. Then y = u+ 1 = v + 1 = z.
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∗ Hence f : N −→ N\{0} is indeed a function, given by f(x) = x+ 1 for any x ∈ N.

∗ Pick any y ∈ N\{0}. Take x = y − 1. Since y, 1 ∈ Z, we have x ∈ Z. Since y ≥ 1, we have x = y − 1 ≥ 0.

Then x ∈ N. By definition, f(x) = x+ 1 = (y − 1) + 1 = y.

∗ Pick any w, x ∈ N. Suppose f(x) = f(w). Then x− 1 = w − 1. Therefore w = x.

∗ It follows that f is a bijective function from N to N\{0}.

4. Example (β).

N∼Z.

(a) Idea.

N

...

0

2

4

...

2n

2n+ 2

1

3
...

2n− 1

2n+ 1
...

Z

...

0

1

2

...

n

n+ 1

−1

−2
...
−n

−n− 1
...

...

...

...

...

(b) Formal argument.

Let F1 = {(2x, x) | x ∈ N}, F2 = {(2x− 1,−x) | x ∈ N\{0}}, and F = F1 ∪ F2.

Note that F ⊂ N ×Z.

Define f = (N,Z, F ). f is a relation from N to Z.

Now verify that f is a bijective function. (Fill in the details. Theorem (II) may help.)

The ‘formula of definition’ of the bijective function f : N −→ Z is given by

f(x) =











x

2
if x is even

−
x+ 1

2
if x is odd

5. ‘Glueing Lemma’.

Theorem (II). (‘Baby version’ of ‘Glueing Lemma’).

Let C,C ′, D,D′ be sets, and g = (C,D,G), g′ = (C ′, D′, G′) be bijective functions. Suppose C∩C ′ = ∅ andD∩D′ = ∅.

Then (C ∪ C ′, D ∪D′, G ∪G′) is a bijective function.

Corollary (III).

Let C,C ′, D,D′ be sets. Suppose C∼D and C ′∼D′. Also suppose C ∩C ′ = ∅ and D∩D′ = ∅. Then C ∪C ′∼D∪D′.

Theorem (II) and Corollary (III) may be extended to the situation for infinite sequences of sets and generalized unions:

Theorem (IV). (‘Glueing Lemma’.)

Let A,B be sets. Let {Cn}
∞

n=0, {Dn}
∞

n=0 be infinite sequences of subsets of A,B respectively. Let {Gn}
∞

n=0 be

an infinite seuqence of subsets of A × B. Suppose {(Cn, Dn, Gn)}
∞

n=0 is an infinite sequence of bijective functions.

Suppose that for any j, k ∈ N, if j 6= k then Cj ∩ Ck = ∅ and Dj ∩ Dk = ∅. Then
(

∞

∪
n=0

Cn,
∞

∪
n=0

Dn,
∞

∪
n=0

Gn

)

is a

bijective function.

Corollary (V).

Let A,B be sets. Let {Cn}
∞

n=0, {Dn}
∞

n=0 be infinite sequences of subsets of A,B respectively. Suppose that for any

n ∈ N, Cn∼Dn. Also suppose that for any j, k ∈ N, if j 6= k then Cj∩Ck = ∅ and Dj∩Dk = ∅. Then
∞

∪
n=0

Cn∼
∞

∪
n=0

Dn.
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6. Example (γ).

N∼N
2.

Remark. Hence, by Theorem (I) and the result in Example (β), we have N
m∼N and Z

m∼Z for any m ∈ N
∗.

(a) Idea.

Break up each of N, N2 into many many parts, match the parts with bijective functions, and then ‘glue up’ these

bijective functions to obtain a bijective function from N to N
2.

There are many ways to do it.

(b) Correspondence 1.

0 1 2 3 4 5 6 7 8 ...
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ...

(0, 0) (1, 0) (1, 1) (0, 1) (2, 0) (2, 1) (2, 2) (1, 2) (0, 2) ...

We have constructed the bijective function f1 : N −→ N
2 below which ‘matches’ the respective entries at the

corresponding positions of the following ‘infinite square-arrays’ to each other:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 4 9 16 25 ...
3 2 5 10 17 26 ...
8 7 6 11 18 27 ...
15 14 13 12 19 28 ...
24 23 22 21 20 29 ...
35 34 33 32 31 30 ...
...

...
...

...
...

...
. . .

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−→

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) (5, 0) ...
(0, 1) (1, 1) (2, 1) (3, 1) (4, 1) (5, 1) ...
(0, 2) (1, 2) (2, 2) (3, 2) (4, 2) (5, 2) ...
(0, 3) (1, 3) (2, 3) (3, 3) (4, 3) (5, 3) ...
(0, 4) (1, 4) (2, 4) (3, 4) (4, 4) (5, 4) ...
(0, 5) (1, 5) (2, 5) (3, 5) (4, 5) (5, 5) ...
...

...
...

...
...

...
. . .

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(c) Correspondence 2.

0 1 2 3 4 5 6 7 8 9 ...
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ...

(0, 0) (1, 0) (0, 1) (2, 0) (1, 1) (0, 2) (3, 0) (2, 1) (1, 2) (0, 3) ...

We have constructed the bijective function f2 : N −→ N
2 below which ‘matches’ the respective entries at the

corresponding positions of the following ‘infinite square-arrays’ to each other:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 3 6 10 15 ...
2 4 7 11 16 22 ...
5 8 12 17 23 30 ...
9 13 18 24 31 39 ...
14 19 25 32 40 49 ...
20 26 33 41 50 60 ...
...

...
...

...
...

...
. . .

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−→

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) (5, 0) ...
(0, 1) (1, 1) (2, 1) (3, 1) (4, 1) (5, 1) ...
(0, 2) (1, 2) (2, 2) (3, 2) (4, 2) (5, 2) ...
(0, 3) (1, 3) (2, 3) (3, 3) (4, 3) (5, 3) ...
(0, 4) (1, 4) (2, 4) (3, 4) (4, 4) (5, 4) ...
(0, 5) (1, 5) (2, 5) (3, 5) (4, 5) (5, 5) ...
...

...
...

...
...

...
. . .

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(d) Correspondence 3.

Define g : N2 −→ N\{0} by g(x, y) = 2y(2x+1) for any x, y ∈ N. g is a bijective function. g sets up the following

‘exact correspondence’ from N
2 to N\{0}:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) (5, 0) ...
(0, 1) (1, 1) (2, 1) (3, 1) (4, 1) (5, 1) ...
(0, 2) (1, 2) (2, 2) (3, 2) (4, 2) (5, 2) ...
(0, 3) (1, 3) (2, 3) (3, 3) (4, 3) (5, 3) ...
(0, 4) (1, 4) (2, 4) (3, 4) (4, 4) (5, 4) ...
(0, 5) (1, 5) (2, 5) (3, 5) (4, 5) (5, 5) ...
...

...
...

...
...

...
. . .

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−→

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 3 5 7 9 11 ...
2 6 10 14 18 22 ...
4 12 20 28 36 44 ...
8 24 40 56 72 88 ...
16 48 80 112 144 176 ...
32 96 160 224 288 352 ...
...

...
...

...
...

...
. . .

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Define h : N\{0} −→ N by h(w) = w − 1 for any w ∈ N\{0}. h is a bijective function. Now h ◦ g is a bijective

function from N
2 to N, given by (h ◦ g)(x, y) = 2y(2x+ 1)− 1 for any x, y ∈ N.

7. Example (δ).

Suppose I is an interval with more than one point. Then I∼R.

• Outline of argument:

(a) Suppose I is ‘finite at both ends’. Deduce:

(a1) I∼[0, 1] if I is closed.
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(a2) I∼[0, 1) if I is half-closed-half-open.

(a3) I∼(0, 1) if I is open.

(b) Suppose I 6= R and I is not ‘finite at both ends’. Deduce:

(b1) I∼[0,+∞) if I is closed.

(b2) I∼(0,+∞) if I is open.

(c) Deduce that [0, 1]∼[0, 1). Similarly deduce that [0, 1)∼(0, 1).

(d) Deduce that (0, 1)∼(0,+∞). Similarly deduce that [0, 1)∼[0,+∞).

(e) Deduce that (0, 1)∼R.

• Respective arguments for (a), (b): Make use of ‘linear functions’.

Respective arguments for (d), (e): Make use of ‘rational functions’.

Argument for (c)? This is non-trivial.

Argument for (c):

• Idea.

[0, 1) is almost the whole of [0, 1] except that it ‘misses’ the point 1. Try to ‘modify’ the identity function from

[0, 1] to [0, 1] to get a bijective function from [0, 1] to [0, 1).

• Trick.

Dig many many holes in [0, 1], [0, 1) at identical positions so that after this digging, what remain of these two

sets are the same set.
(But what to do with the ‘debris’? Don’t throw them away.)

Take H =

{

1

2n

∣

∣

∣

∣

n ∈ N

}

. It is the set of all terms of the strictly decreasing infinite sequence

{

1

2n

}

∞

n=0

in [0, 1].

Except its zero-th term, every term is in [0, 1).

Now draw the ‘blobs-and-arrows diagram’ as described here:

∗ Match 1 in [0, 1] with
1

2
in [0, 1). Match

1

2
in [0, 1] with

1

4
in [0, 1). Match

1

4
in [0, 1] with

1

8
in [0, 1). ...

Match
1

2n
in [0, 1] with

1

2n+1
in [0, 1). Match

1

2n+1
in [0, 1] with

1

2n+2
in [0, 1). Et cetera.

∗ Now note that [0, 1]\H = [0, 1)\H. So we match these two sets with the identity function.

[0, 1]

[0, 1]\H

H

...

1

2−1

2−2

...

2−n

2−n−1

0

1

2−1

...
2−n

2−n−1

...

[0, 1)

[0, 1)\H

H\{1}

...

2−1

2−2

2−3

...

2−n−1

2−n−2

0

1

2−1

...
2−n

2−n−1

...

...

...

...

...

• Formal argument.

Define H =

{

1

2n

∣

∣

∣

∣

n ∈ N

}

. Note that [0, 1]\H = [0, 1)\H.

Define F1 = {(x, x) | x ∈ [0, 1]\H} and F2 =
{

(x,
x

2
) | x ∈ H

}

and F = F1 ∪ F2.

Verify that f1 = ([0, 1]\H, [0, 1)\H,F1), f2 = (H,H\{1}, F2) are bijective functions. (Fill in the detail.)

Define f = ([0, 1], [0, 1), F ). f is a relation. f is a bijective function according to the ‘Glueing Lemma’.

• The argument for [0, 1)∼(0, 1) is similar.
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8. Example (ǫ).

Suppose A is a set. Then P(A)∼Map(A, {0, 1}).

(a) Idea (through one example).

Let A = {p, q, r}, where p, q, r are pairwise distinct.

‘Light bulb’ analogy:

∗ Imagine p, q, r are points on the plane, and a light bulb is fixed at each of p, q, r.

∗ When a subset S of A is named, we turn on the lights at the corresponding elements of S.

The light-bulbs at the elements of S go to ‘on-state’ (denoted by ‘1’).

The ‘light-bulbs’ at the elements of A\S remain in the ‘off-state’ (denoted by ‘0’).

This give an ‘overall state’ of the ‘light bulbs’ in A according to what S is.

∗ For instance, when S = {p, q}, the lightbulbs at p, q are ‘on’ and that at r remains ‘off’. We may represent

this overall state in such a diagram:

A p q r

{0, 1}

0

1

A× {0, 1}

∗ Such a diagram is in fact a graph of the function from A to {0, 1}.

(When S = {0, 1}, the function concerned assigns p, q, r to 1, 1, 0 respectively.)

∗ Observation.
Each individual element of P(A) corresponds to exactly one ‘overall state’ of the “light-bulbs” in A.

So we have a ‘natural’ ‘exact correspondence’ between the subsets of A and the functions from A to {0, 1}

(as visualized by their respective graphs).

Subsets
of A

Functions from A to {0, 1},
represented by their graphs

Subsets
of A

Functions from A to {0, 1},
represented by their graphs

∅ A p q r

{0, 1}

0

1

A× {0, 1}

{p, q, r}

p q r

A p q r

{0, 1}

0

1

A× {0, 1}

{p}

p

A p q r

{0, 1}

0

1

A× {0, 1}

{q, r}

q r

A p q r

{0, 1}

0

1

A× {0, 1}

{q}

q

A p q r

{0, 1}

0

1

A× {0, 1}

{p, r}

p r

A p q r

{0, 1}

0

1

A× {0, 1}

{r}

r

A p q r

{0, 1}

0

1

A× {0, 1}

{p, q}

p q

A p q r

{0, 1}

0

1

A× {0, 1}

(b) Formal argument.

Suppose A is a set. Then A = ∅ or A 6= ∅.

If A = ∅ then (P(A) = {∅} and Map(A, {0, 1}) = {(∅, {0, 1}, ∅)}). [Done.]
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From now on suppose A 6= ∅. For each S ∈ P(A), define the function χA
S : A −→ {0, 1} by

χA
S (x) =

{

1 if x ∈ S

0 if x ∈ A\S.

Define the function f : P(A) −→ Map(A, {0, 1}) by f(S) = χA
S for any S ∈ P(A).

Verify that f is bijective. (Fill in the detail.)

Remark. χA
S is called the characteristic function of the set S in the set A.

9. Example (ζ).

Map(N, {0, 1})∼(Map(N, {0, 1}))2.

(a) Idea.

Each element of Map(N, {0, 1}) is a function from N to {0, 1}, and hence is an infinite sequence in {0, 1}.

Is there any natural ‘exact correspondence’ between infinite sequences in {0, 1} and ordered pairs of such se-

quences?

∗ Just name any infinite sequence in {0, 1}. For convenicence, call it {an}
∞

n=0.

∗ What do we obtain from {an}
∞

n=0 by deleting all terms at ‘odd positions?’, without changing the ordering

of the terms?
∗ What do we obtain from {an}

∞

n=0 by deleting all terms at ‘even positions?’, without changing the ordering

of the terms?
∗ Can we recover the original infinite sequence {an}

∞

n=0 from the two resultant infinite sequences?

What can we say about the function from Map(N, {0, 1}) to (Map(N, {0, 1}))2 defined by

(a0, a1, a2, a3, a4, a5, · · · ) 7−→ ((a0, a2, a4, · · · ), (a1, a3, a5, · · · ))

for each infinite sequence {an}
∞

n=0 in {0, 1}?

(b) Formal argument.

Exercise.

Remarks. More generally, we have:

(a) Map(N, {0, 1})∼(Map(N, {0, 1}))n for any n ∈ N\{0}.

(b) Map(N, B)∼(Map(N, B))n for any n ∈ N\{0}, whenever B is a non-empty set.
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