MATH1050 Sets of equal cardinality

1. Definition.

Let A, B be sets. A is said to be of cardinality equal to B if there is a bijective function from A to B. We write
A~B.

Remark on notation. Where A is not of cardinality equal to B, we write A + B.
2. Theorem (I). (Properties of ~.)

(1) Let A be a set. A~ iff A=10.

(2) Let x,y be objects. {x}~{y}.

(3) Let A, B,C be sets. The following statements hold:
(3a) A~A.
(3b) Suppose A~B. Then B~A.
(3¢) Suppose A~B and B~C'. Then A~C.

(4) Let A, B,C, D be sets. The following statements hold:
(4a) Suppose A~C and B~D. Then A x B~C x D.
(4b) Suppose A~C'. Then B(A)~P(C).
(4c) Suppose A~C' and B~D. Then Map(A, B)~Map(C, D).
Remarks.

e According to (3), ~ defines an equivalence relation in the power set of any given set.
e In (4), Map(A4, B) is the set of all functions from A to B.

3. Example ().

N~N\{0}.
(a) Idea.
n—+ 1.0 > O.n—|—2
n e > on+1
2'o > 0.3
1@ > ® 2
e > ®1
N —>  N\{0}

This is the ‘blobs-and-arrows’ diagram for a certain bijective function, which we denote by f here, but how to
write down this f explicitly?
It is the function f: N — N\{0} whose graph is {(z,z 4+ 1) | € N} respectively.
Its ‘formula of definition’ is given by f(z) =« + 1 for any = € N.
(b) Formal argument.
Let FF={(z,z+1) | x € N}.
(Very formally presented, we have F' = {p | There exists some = € N such that p = (z,z + 1).}.)
Note that F C N x (N\{0}).
Define f = (N, N\{0}, F).
f is a relation from N to N\{0}.
Now we proceed to verify that f is a bijective function:
* Pick any x € N. Take y = x + 1. Since z,1 € N, we have y € N. Moreover, y =x+1> 041 > 0. Then
y € N\{0}. By definition, (x,y) € F.
x Pick any € N. Pick any y,2z € N\{0}. Suppose (z,y) € F and (z,z) € F. Since (z,y) € F, there
exists some u € N such that (z,y) = (u,u + 1). Since (x,z) € F, there exists some v € N such that
(z,z) = (v,v+1). Now we have u =x =v. Theny=u+1=v+1=2z.



* Hence f: N — N\{0} is indeed a function, given by f(z) = x + 1 for any = € N.

* Pick any y € N\{0}. Take z =y — 1. Since y,1 € Z, we have € Z. Since y > 1, we have x =y — 1 > 0.
Then z € N. By definition, f(z)=z+1=(y—1)+1=y.

* Pick any w,xz € N. Suppose f(z) = f(w). Then z — 1 = w — 1. Therefore w = x.

* It follows that f is a bijective function from N to N\{0}.

4. Example (5).

N~Z.
(a) Idea.
2n+2.. > O.n—|—1
2n @ > on
4 @ > o 2
2@ L 2
0e ®0
le > o —1
3@ > o —2
2n—1.0 > 0.—n
2n+1 e > ®—n—1
N e y/A

(b) Formal argument.
Let Fi = {(2z,z) | x € N}, Fp, ={(2z — 1,—z) | z € N\{0}}, and F = F} U F5.
Note that F C N x Z.
Define f = (N,Z, F). f is a relation from N to Z.
Now verify that f is a bijective function. (Fill in the details. Theorem (II) may help.)
The ‘formula of definition’ of the bijective function f: N — Z is given by
z if = is even
2
z+1
2

f(@) =
if z is odd

5. ‘Glueing Lemma’.
Theorem (II). (‘Baby version’ of ‘Glueing Lemma’).

Let C,C", D, D' be sets, and g = (C, D, G), g = (C', D', G") be bijective functions. Suppose CNC’ = () and DND’ = .
Then (CUC',DUD’',GUG’) is a bijective function.

Corollary (III).
Let C,C", D, D’ be sets. Suppose C~D and C'~D’. Also suppose CNC’ = () and DND' = (). Then CUC'~DUD'.

Theorem (IT) and Corollary (IIT) may be extended to the situation for infinite sequences of sets and generalized unions:
Theorem (IV). (‘Glueing Lemma’.)
Let A, B be sets. Let {Cn}, {Dn}22, be infinite sequences of subsets of A, B respectively. Let {G,}52, be

an infinite seugence of subsets of A x B. Suppose {(Cy, Dy, Gp)}2, is an infinite sequence of bijective functions.

Suppose that for any j,k € N, if j # k then C; NCy, = 0 and D; N Dy, = (. Then (noLjO C’n,noLjO Dn,an:OO Gn) is a
bijective function.

Corollary (V).

Let A, B be sets. Let {C,}5%, {Dn}52, be infinite sequences of subsets of A, B respectively. Suppose that for any
n e N, C,~D,,. Also suppose that for any j,k € N, if j # k then C;NC), = () and D;N Dy, = (. Then nOL:jo annogo D,.



6. Example (7).

N~NZ.
Remark. Hence, by Theorem (I) and the result in Example (8), we have N ~N and Z™~Z for any m € N*.

(a) Idea.
Break up each of N, N? into many many parts, match the parts with bijective functions, and then ‘glue up’ these
bijective functions to obtain a bijective function from N to N2

There are many ways to do it.
(b) Correspondence 1.

0 1 2 3 4 5 6 7 8
4 + S + + + 4 + ol
0,0) [ (1,0) (L,1) (0,1 | (2,0) (21 (22) (1,2 (0,2)]..

We have constructed the bijective function f; : N — N? below which ‘matches’ the respective entries at the
corresponding positions of the following ‘infinite square-arrays’ to each other:

1 4 9 16 25
10 17 26
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(c) Correspondence 2.

0 7 8 9

4 5 6
+ + + + + +

1 2
+ + 4 +
(0,0) | (1,0) (0,1) | (2,0) (1,1) (0,2) | (3,0) (2,1) (1,2) (0,3) | ...

3

We have constructed the bijective function fo : N — N? below which ‘matches’ the respective entries at the
corresponding positions of the following ‘infinite square-arrays’ to each other:

0 1 3 6 10 15 (0,0) (1,0) (2,0) (3,0) (4,0) (5,0)
2 4 7 11 16 22 0,1) (1,1) (2,1) (3,1) (4,1) (5,1)
5 8 12 17 23 30 0,2) (1,2) (2,2) (3,2) (4,2) (5,2)
9 13 18 24 31 39 L1 (03) (1,3) (2,3) (3,3) (4,3) (5.3)
14 19 25 32 40 49 (0,4) (1,4) (2,4) (3,4) (4,4) (5,4)
20 26 33 41 50 60 (0,5) (1,5) (2,5) (3,5) (4,5) (5,5)

(d) Correspondence 3.
Define g : N> — N\{0} by g(z,y) = 2¢(2z+1) for any z,y € N. g is a bijective function. g sets up the following

‘exact correspondence’ from N? to N\{0}:

(0,0) (1,0) (2,0) (3,0) (4,0) (5,0) 1 3 5 7 9 11
0,1) (1,1) (2,1) (3,1) (4,1) (5,1) 2 6 10 14 18 22
0,2) (1,2) (2,2) (3,2) (4,2) (5,2) 4 12 20 28 36 44
0,3) (1,3) (2,3) (3,3) (4,3) (5,3) |8 24 40 56 72 88
(0,4) (1,4) (2,4) (3,4) (4,4) (5,4) 16 48 80 112 144 176
0,5) (1,5) (2,5) (3,5) (4,5) (5,5) 32 96 160 224 288 352

Define h : N\{0} — N by h(w) = w — 1 for any w € N\{0}. h is a bijective function. Now h o g is a bijective
function from N? to N, given by (h o g)(x,y) = 2¥(2z 4+ 1) — 1 for any =,y € N.

7. Example (9).

Suppose I is an interval with more than one point. Then I~IR.

e Qutline of argument:
(a) Suppose I is ‘finite at both ends’. Deduce:
(al) I~[0,1]if I is closed.



(a2) I~[0,1) if I is half-closed-half-open.
(a3) I~(0,1) if I is open.
(b) Suppose I # R and I is not ‘finite at both ends’. Deduce:
(bl) I~[0,+400) if I is closed.
(b2) I~(0,+00) if I is open.
(¢) Deduce that [0,1]~[0,1). Similarly deduce that [0,1)~(0, 1).
(d) Deduce that (0,1)~(0,+00). Similarly deduce that [0,1)~[0, +00).
(e) Deduce that (0,1)~IR.
e Respective arguments for (a), (b): Make use of ‘linear functions’.
Respective arguments for (d), (e): Make use of ‘rational functions’.

Argument for (c)? This is non-trivial.

Argument for (c):

e Idea.
[0,1) is almost the whole of [0, 1] except that it ‘misses’ the point 1. Try to ‘modify’ the identity function from

[0,1] to [0,1] to get a bijective function from [0,1] to [0,1).
o Trick.
Dig many many holes in [0, 1], [0,1) at identical positions so that after this digging, what remain of these two

sets are the same set.
(But what to do with the ‘debris’? Don’t throw them away.)

1 1
Take H = { o n e N}. It is the set of all terms of the strictly decreasing infinite sequence {QH} in [0, 1].

Except its zero-th term, every term is in [0,1).
Now draw the ‘blobs-and-arrows diagram’ as described here:
1 1 1 1 1
* Match 1 in [0, 1] with 3 in [0,1). Match 3 in [0, 1] with 1 in [0,1). Match 1 in [0, 1] with 3 in [0,1). ...
1 1 1 1
Match o in [0, 1] with ST in [0,1). Match ontT in [0, 1] with iz in [0,1). Et cetera.
* Now note that [0,1]\H = [0,1)\H. So we match these two sets with the identity function.

2—n—1.. > : ..2—71—2
2-" @ > ° 2—n—1
: : : H\{1
H 272 @ > ® 23 W1
27l e > ® 92
le > L I
1 1
S
0,1]\H : g : 0, )\ H
[0, 1)\ - | - 0, 1)\
2—n—1 2—n—1
0 0
[0,1] [0,1)

e Formal argument.

1
Define H = {2n

n e N}. Note that [0, 1]\H = [0, 1)\ H.

Define Fy = {(z,2) | z € [0, 1]\H} and F; = {(z, g) |z e H} and F = F, U Fy.
Verify that f1 = ([0, 1]\H, [0, 1)\H, F}), fo = (H, H\{1}, F») are bijective functions. (Fill in the detail.)
Define f = ([0,1],[0,1), F). f is a relation. f is a bijective function according to the ‘Glueing Lemma’.

e The argument for [0,1)~(0, 1) is similar.



8. Example (e).
Suppose A is a set. Then PB(A)~Map(A,{0,1}).

(a) Idea (through one example).
Let A = {p,q,r}, where p, q,r are pairwise distinct.
‘Light bulb’ analogy:
x Imagine p, ¢, r are points on the plane, and a light bulb is fixed at each of p, g, r.
x When a subset S of A is named, we turn on the lights at the corresponding elements of S.
The light-bulbs at the elements of S go to ‘on-state’ (denoted by ‘17).
The ‘light-bulbs’ at the elements of A\S remain in the ‘off-state’ (denoted by ‘0’).
This give an ‘overall state’ of the ‘light bulbs’ in A according to what S is.
* For instance, when S = {p, ¢}, the lightbulbs at p, ¢ are ‘on’ and that at r remains ‘off’. We may represent
this overall state in such a diagram:

Ax{0,1}
le O O
0Oe o)

{01} o 0o 0
NEEER

* Such a diagram is in fact a graph of the function from A to {0,1}.
(When S = {0, 1}, the function concerned assigns p, g, to 1,1, 0 respectively.)

x Observation.
Each individual element of B (A) corresponds to exactly one ‘overall state’ of the “light-bulbs” in A.

So we have a ‘natural’ ‘exact correspondence’ between the subsets of A and the functions from A to {0,1}
(as visualized by their respective graphs).

Subsets Functions from A to {0, 1}, Subsets Functions from A to {0, 1},
of A represented by their graphs of A represented by their graphs
A x{0,1} A x{0,1}
le le O O O
e o O O © 6 O e
p q T
{0.13 o o 0 {0.13 e 0o 0
Al p g r {p,q.7} Al p qgr
A x{0,1} A x{0,1}
1@ @] 1@ o O
0e O O 0Oe o)
{0,1} e o o {0, 1} e o o
{r} Al p q 7 {a,7} Al p q 7
A x{0,1} A x{0,1}
1@ O 1@ O (@)
0oe @) @) 0e 0
{01} Mo o o | 0.1} Mo o o |
{a} Al p q 7 {p,7} Al p q 7
Ax{0,1} Ax{0,1}
le @) le O O
0e O O 0Oe o)
0.1} Mo o o | 0.1} Mo o o |
{r} Al p q 7 {p, ¢} Al p q 7

(b) Formal argument.
Suppose A is a set. Then A =0 or A # (.
If A=0 then (P(A) = {0} and Map(A4,{0,1}) = {(0,{0,1},0)}). [Done.]



From now on suppose A # (). For each S € B(A), define the function x4 : A — {0,1} by

A . 1 if res
XS(x){ 0 if  zecA\S

Define the function f : P(A4) — Map(A4, {0,1}) by f(S) = x& for any S € P(A).
Verify that f is bijective. (Fill in the detail.)

Remark. x4 is called the characteristic function of the set S in the set A.

9. Example ().
Map(N, {0, 1})~(Map(N, {0, 1}))?.

(a) Idea.
Each element of Map(N, {0,1}) is a function from N to {0,1}, and hence is an infinite sequence in {0, 1}.

Is there any natural ‘exact correspondence’ between infinite sequences in {0,1} and ordered pairs of such se-
quences?

* Just name any infinite sequence in {0, 1}. For convenicence, call it {a,}22,.

* What do we obtain from {ay,}52, by deleting all terms at ‘odd positions?’, without changing the ordering
of the terms?

* What do we obtain from {a,}52, by deleting all terms at ‘even positions?’, without changing the ordering
of the terms?

* Can we recover the original infinite sequence {a,}22, from the two resultant infinite sequences?

What can we say about the function from Map(N, {0,1}) to (Map(N, {0,1}))? defined by

(a07a17a27a37a47a57 o ) — ((a’07a’27a’47 T )7 (0,1,0,3,&5, o ))

for each infinite sequence {a,}52, in {0,1}?
(b) Formal argument.

Exercise.
Remarks. More generally, we have:

(2) Map(N, {0, 1})~(Map(N, {0, 1}))" for any n € N\{0}.
(b) Map(N, B)~(Map(N, B))" for any n € N\{0}, whenever B is a non-empty set.



