1. Definition.

Let A, B be sets. A is said to be **of cardinality equal to** B if there is a bijective function from A to B. We write A∼B.

Remark on notation. Where A is not of cardinality equal to B, we write $A \nightharpoonup B$.

2. Theorem (I). (Properties of ∼.)

- (1) Let A be a set. $A\sim\emptyset$ iff $A=\emptyset$.
- (2) Let x, y be objects. $\{x\} \sim \{y\}$.
- (3) Let A, B, C be sets. The following statements hold:
	- (3a) A∼A.
	- (3b) Suppose $A \sim B$. Then $B \sim A$.
	- (3c) Suppose $A \sim B$ and $B \sim C$. Then $A \sim C$.
- (4) Let A, B, C, D be sets. The following statements hold:
	- (4a) Suppose $A \sim C$ and $B \sim D$. Then $A \times B \sim C \times D$.
	- (4b) Suppose $A \sim C$. Then $\mathfrak{P}(A) \sim \mathfrak{P}(C)$.
	- (4c) Suppose $A \sim C$ and $B \sim D$. Then Map(A, B)~Map(C, D).

Remarks.

- According to (3), \sim defines an equivalence relation in the power set of any given set.
- In (4), $\text{Map}(A, B)$ is the set of all functions from A to B.

3. Example (α) .

 $\mathsf{N}\!\sim\!\mathsf{N}\setminus\{0\}.$

(a) Idea.

This is the 'blobs-and-arrows' diagram for a certain bijective function, which we denote by f here, but how to write down this f explicitly?

It is the function $f : \mathbb{N} \longrightarrow \mathbb{N} \setminus \{0\}$ whose graph is $\{(x, x + 1) \mid x \in \mathbb{N}\}$ respectively.

Its 'formula of definition' is given by $f(x) = x + 1$ for any $x \in \mathbb{N}$.

(b) Formal argument.

Let
$$
F = \{(x, x + 1) | x \in \mathbb{N}\}.
$$

(Very formally presented, we have $F = \{p \mid \text{There exists some } x \in \mathbb{N} \text{ such that } p = (x, x + 1). \}.$

Note that $F \subset \mathbb{N} \times (\mathbb{N} \setminus \{0\}).$

Define $f = (\mathbb{N}, \mathbb{N} \setminus \{0\}, F)$.

f is a relation from \mathbb{N} to $\mathbb{N}\setminus\{0\}$.

Now we proceed to verify that f is a bijective function:

- \ast Pick any $x \in \mathbb{N}$. Take $y = x + 1$. Since $x, 1 \in \mathbb{N}$, we have $y \in \mathbb{N}$. Moreover, $y = x + 1 \ge 0 + 1 > 0$. Then $y \in \mathbb{N} \setminus \{0\}$. By definition, $(x, y) \in F$.
- \ast Pick any $x \in \mathbb{N}$. Pick any $y, z \in \mathbb{N}\setminus\{0\}$. Suppose $(x, y) \in F$ and $(x, z) \in F$. Since $(x, y) \in F$, there exists some $u \in \mathbb{N}$ such that $(x, y) = (u, u + 1)$. Since $(x, z) \in F$, there exists some $v \in \mathbb{N}$ such that $(x, z) = (v, v + 1)$. Now we have $u = x = v$. Then $y = u + 1 = v + 1 = z$.

 \ast Hence $f : \mathbb{N} \longrightarrow \mathbb{N}\setminus\{0\}$ is indeed a function, given by $f(x) = x + 1$ for any $x \in \mathbb{N}$.

- \ast Pick any $y \in \mathbb{N}\setminus\{0\}$. Take $x = y 1$. Since $y, 1 \in \mathbb{Z}$, we have $x \in \mathbb{Z}$. Since $y \ge 1$, we have $x = y 1 \ge 0$. Then $x \in \mathbb{N}$. By definition, $f(x) = x + 1 = (y - 1) + 1 = y$.
- \ast Pick any $w, x \in \mathbb{N}$. Suppose $f(x) = f(w)$. Then $x 1 = w 1$. Therefore $w = x$.
- \ast It follows that f is a bijective function from N to N\{0}.

4. Example (β) .

N∼Z.

(a) Idea.

(b) Formal argument.

Let $F_1 = \{(2x, x) \mid x \in \mathbb{N}\}, F_2 = \{(2x - 1, -x) \mid x \in \mathbb{N}\setminus\{0\}\},\$ and $F = F_1 \cup F_2$. Note that $F \subset \mathbb{N} \times \mathbb{Z}$.

Define $f = (\mathbb{N}, \mathbb{Z}, F)$. f is a relation from \mathbb{N} to \mathbb{Z} .

Now verify that f is a bijective function. (Fill in the details. Theorem (II) may help.)

The 'formula of definition' of the bijective function $f : \mathbb{N} \longrightarrow \mathbb{Z}$ is given by

$$
f(x) = \begin{cases} \frac{x}{2} & \text{if } x \text{ is even} \\ -\frac{x+1}{2} & \text{if } x \text{ is odd} \end{cases}
$$

5. 'Glueing Lemma'.

Theorem (II). ('Baby version' of 'Glueing Lemma').

Let C, C', D, D' be sets, and $g = (C, D, G), g' = (C', D', G')$ be bijective functions. Suppose $C \cap C' = \emptyset$ and $D \cap D' = \emptyset$. Then $(C \cup C', D \cup D', G \cup G')$ is a bijective function.

Corollary (III).

Let C, C', D, D' be sets. Suppose C∼D and C'∼D'. Also suppose $C \cap C' = \emptyset$ and $D \cap D' = \emptyset$. Then $C \cup C' \sim D \cup D'$.

Theorem (II) and Corollary (III) may be extended to the situation for infinite sequences of sets and generalized unions: Theorem (IV). ('Glueing Lemma'.)

Let A, B be sets. Let ${C_n}_{n=0}^{\infty}$, ${D_n}_{n=0}^{\infty}$ be infinite sequences of subsets of A, B respectively. Let ${G_n}_{n=0}^{\infty}$ be an infinite seuqence of subsets of $A \times B$. Suppose $\{(C_n, D_n, G_n)\}_{n=0}^{\infty}$ is an infinite sequence of bijective functions. Suppose that for any $j, k \in \mathbb{N}$, if $j \neq k$ then $C_j \cap C_k = \emptyset$ and $D_j \cap D_k = \emptyset$. Then $\left(\bigcup_{n=0}^{\infty} C_n, \bigcup_{n=0}^{\infty} D_n, \bigcup_{n=0}^{\infty} G_n\right)$ is a bijective function.

Corollary (V).

Let A, B be sets. Let ${C_n}_{n=0}^{\infty}$, ${D_n}_{n=0}^{\infty}$ be infinite sequences of subsets of A, B respectively. Suppose that for any $n \in \mathbb{N}$, $C_n \sim D_n$. Also suppose that for any $j, k \in \mathbb{N}$, if $j \neq k$ then $C_j \cap C_k = \emptyset$ and $D_j \cap D_k = \emptyset$. Then $\bigcup_{n=0}^{\infty} C_n \sim \bigcup_{n=0}^{\infty} D_n$. 6. Example (γ) .

 $\mathsf{N}\!\sim\!\mathsf{N}^2.$

Remark. Hence, by Theorem (I) and the result in Example (β), we have $\mathbb{N}^m \sim \mathbb{N}$ and $\mathbb{Z}^m \sim \mathbb{Z}$ for any $m \in \mathbb{N}^*$.

(a) Idea.

Break up each of \mathbb{N} , \mathbb{N}^2 into many many parts, match the parts with bijective functions, and then 'glue up' these bijective functions to obtain a bijective function from \mathbb{N} to \mathbb{N}^2 .

There are many ways to do it.

(b) Correspondence 1.

We have constructed the bijective function $f_1 : \mathbb{N} \longrightarrow \mathbb{N}^2$ below which 'matches' the respective entries at the corresponding positions of the following 'infinite square-arrays' to each other:

> $\overline{}$ $\overline{}$

> $\overline{}$ $\overline{}$

> > $\overline{}$ $\overline{}$

(c) Correspondence 2.

0 1 2 3 4 5 6 7 8 9 ... ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ... (0, 0) (1, 0) (0, 1) (2, 0) (1, 1) (0, 2) (3, 0) (2, 1) (1, 2) (0, 3) ...

We have constructed the bijective function $f_2 : \mathbb{N} \longrightarrow \mathbb{N}^2$ below which 'matches' the respective entries at the corresponding positions of the following 'infinite square-arrays' to each other:

(d) Correspondence 3.

Define $g: \mathbb{N}^2 \longrightarrow \mathbb{N} \setminus \{0\}$ by $g(x, y) = 2^y(2x+1)$ for any $x, y \in \mathbb{N}$. g is a bijective function. g sets up the following 'exact correspondence' from \mathbb{N}^2 to $\mathbb{N}\setminus\{0\}$:

Define $h : \mathbb{N} \setminus \{0\} \longrightarrow \mathbb{N}$ by $h(w) = w - 1$ for any $w \in \mathbb{N} \setminus \{0\}$. h is a bijective function. Now $h \circ g$ is a bijective function from \mathbb{N}^2 to \mathbb{N} , given by $(h \circ g)(x, y) = 2^y(2x + 1) - 1$ for any $x, y \in \mathbb{N}$.

7. Example (δ) .

Suppose I is an interval with more than one point. Then $I \sim \mathbb{R}$.

- Outline of argument:
	- (a) Suppose I is 'finite at both ends'. Deduce: (a1) $I \sim [0, 1]$ if I is closed.
- (a2) $I \sim [0, 1)$ if I is half-closed-half-open.
- (a3) $I \sim (0, 1)$ if I is open.
- (b) Suppose $I \neq \mathbb{R}$ and I is not 'finite at both ends'. Deduce:
	- (b1) $I\sim[0,+\infty)$ if I is closed.
	- (b2) $I\sim(0, +\infty)$ if I is open.
- (c) Deduce that $[0, 1]~[0, 1)$. Similarly deduce that $[0, 1)~[0, 1)$.
- (d) Deduce that $(0, 1) \sim (0, +\infty)$. Similarly deduce that $[0, 1) \sim [0, +\infty)$.
- (e) Deduce that $(0, 1)~\sim$ R.
- Respective arguments for (a), (b): Make use of 'linear functions'. Respective arguments for (d), (e): Make use of 'rational functions'. Argument for (c)? This is non-trivial.

Argument for (c):

 \bullet *Idea.*

 $[0, 1)$ is almost the whole of $[0, 1]$ except that it 'misses' the point 1. Try to 'modify' the identity function from $[0, 1]$ to $[0, 1]$ to get a bijective function from $[0, 1]$ to $[0, 1]$.

• Trick.

Dig many many holes in $[0, 1]$, $[0, 1)$ at identical positions so that after this digging, what remain of these two sets are the same set.

(But what to do with the 'debris'? Don't throw them away.)

Take $H = \begin{cases} \frac{1}{\alpha} \end{cases}$ 2^n $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \end{array} \end{array}$ $n \in \mathbb{N}$. It is the set of all terms of the strictly decreasing infinite sequence $\left\{\frac{1}{\alpha}\right\}$ 2^n [∞] $n=0$ in [0, 1]. Except its zero-th term, every term is in $[0, 1)$.

Now draw the 'blobs-and-arrows diagram' as described here:

- * Match 1 in [0, 1] with $\frac{1}{2}$ in [0, 1]. Match $\frac{1}{2}$ in [0, 1] with $\frac{1}{4}$ in [0, 1]. Match $\frac{1}{4}$ in [0, 1] with $\frac{1}{8}$ in [0, 1). ... Match $\frac{1}{2^n}$ in [0, 1] with $\frac{1}{2^{n+1}}$ in [0, 1]. Match $\frac{1}{2^{n+1}}$ in [0, 1] with $\frac{1}{2^{n+2}}$ in [0, 1). Et cetera.
- $∗$ Now note that $[0, 1] \ H = [0, 1) \ H$. So we match these two sets with the identity function.

• Formal argument.

Define $H = \begin{cases} \frac{1}{\alpha^2} \end{cases}$ 2^n $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $n \in \mathbb{N}$. Note that $[0,1] \backslash H = [0,1] \backslash H$. Define $F_1 = \{(x, x) \mid x \in [0, 1] \backslash H\}$ and $F_2 = \{(x, \frac{x}{2}) \mid x \in [0, 1] \backslash H\}$ $\left\{ \frac{x}{2} \right) \mid x \in H \right\}$ and $F = F_1 \cup F_2$. Verify that $f_1 = ([0, 1] \setminus H, [0, 1] \setminus H, F_1)$, $f_2 = (H, H \setminus \{1\}, F_2)$ are bijective functions. (Fill in the detail.) Define $f = ([0, 1], [0, 1], F)$. f is a relation. f is a bijective function according to the 'Glueing Lemma'.

• The argument for $[0, 1) \sim (0, 1)$ is similar.

8. Example (ϵ) .

Suppose A is a set. Then $\mathfrak{P}(A) \sim \mathsf{Map}(A, \{0, 1\}).$

(a) Idea (through one example).

Let $A = \{p, q, r\}$, where p, q, r are pairwise distinct. 'Light bulb' analogy:

- \ast Imagine p, q, r are points on the plane, and a light bulb is fixed at each of p, q, r.
- ∗ When a subset S of A is named, we turn on the lights at the corresponding elements of S. The light-bulbs at the elements of S go to 'on-state' (denoted by '1'). The 'light-bulbs' at the elements of $A\ S$ remain in the 'off-state' (denoted by '0'). This give an 'overall state' of the 'light bulbs' in A according to what S is.
- ∗ For instance, when S = {p, q}, the lightbulbs at p, q are 'on' and that at r remains 'off'. We may represent this overall state in such a diagram:

$$
\begin{array}{c|c|c}\n\hline\n1 & \bullet & \circ & \circ \\
0 & \bullet & \circ & \circ \\
\hline\n\vdots & \vdots & \ddots & \vdots \\
\hline\n\vdots & \bullet & \bullet & \bullet \\
A & p & q & r\n\end{array}
$$

 $\}$

- ∗ Such a diagram is in fact a graph of the function from A to {0, 1}.
- (When $S = \{0, 1\}$, the function concerned assigns p, q, r to 1, 1, 0 respectively.)
- ∗ Observation.
	- Each individual element of $\mathfrak{P}(A)$ corresponds to exactly one 'overall state' of the "light-bulbs" in A. So we have a 'natural' 'exact correspondence' between the subsets of A and the functions from A to $\{0,1\}$ (as visualized by their respective graphs).

(b) Formal argument.

Suppose A is a set. Then $A = \emptyset$ or $A \neq \emptyset$. If $A = \emptyset$ then $(\mathfrak{P}(A) = \{\emptyset\}$ and $\mathsf{Map}(A, \{0, 1\}) = \{(\emptyset, \{0, 1\}, \emptyset)\}\)$. [Done.] From now on suppose $A \neq \emptyset$. For each $S \in \mathfrak{P}(A)$, define the function $\chi_S^A : A \longrightarrow \{0,1\}$ by

$$
\chi_S^A(x) = \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{if } x \in A \setminus S. \end{cases}
$$

Define the function $f: \mathfrak{P}(A) \longrightarrow \mathsf{Map}(A, \{0,1\})$ by $f(S) = \chi_S^A$ for any $S \in \mathfrak{P}(A)$.

Verify that f is bijective. (Fill in the detail.)

Remark. S^A is called the **characteristic function of the set** S in the set A.

9. Example (ζ) .

 $\mathsf{Map}(\mathsf{N}, \{0, 1\}) \sim (\mathsf{Map}(\mathsf{N}, \{0, 1\}))^2$.

(a) Idea.

Each element of $\textsf{Map}(\mathbb{N}, \{0, 1\})$ is a function from \mathbb{N} to $\{0, 1\}$, and hence is an infinite sequence in $\{0, 1\}$.

Is there any natural 'exact correspondence' between infinite sequences in $\{0, 1\}$ and ordered pairs of such sequences?

- ∗ Just name any infinite sequence in ${0,1}$. For convenicence, call it ${a_n}_{n=0}^{\infty}$.
- ∗ What do we obtain from ${a_n}_{n=0}^{\infty}$ by deleting all terms at 'odd positions?', without changing the ordering of the terms?
- ∗ What do we obtain from $\{a_n\}_{n=0}^{\infty}$ by deleting all terms at 'even positions?', without changing the ordering of the terms?
- ∗ Can we recover the original infinite sequence ${a_n}_{n=0}^{\infty}$ from the two resultant infinite sequences?

What can we say about the function from $\textsf{Map}(\mathsf{N}, \{0, 1\})$ to $(\textsf{Map}(\mathsf{N}, \{0, 1\}))^2$ defined by

 $(a_0, a_1, a_2, a_3, a_4, a_5, \cdots) \mapsto ((a_0, a_2, a_4, \cdots), (a_1, a_3, a_5, \cdots))$

for each infinite sequence ${a_n}_{n=0}^{\infty}$ in ${0,1}$?

(b) Formal argument.

Exercise.

Remarks. More generally, we have:

- (a) Map(N , $\{0, 1\}$)∼(Map(N , $\{0, 1\}$)ⁿ for any $n \in N \setminus \{0\}$.
- (b) Map(N, B)∼(Map(N, B))ⁿ for any $n \in \mathbb{N}\backslash\{0\}$, whenever B is a non-empty set.