- 1. Formal definition for the notion of relations and functions, and re-formulation of the definition of surjectivity and injectivity.
 - (a) Let D, R, H be sets. The ordered triple (D, R, H) is called a relation from D to R if $H \subset D \times R$.
 - (b) Let D, R be sets, and H be a subset of $D \times R$. The relation (D, R, H) is said to be a function from domain D to range R with graph H if both of the statements (E), (U) below hold:
 - (E): For any $t \in D$, there exists some $u \in R$ such that $(t, u) \in H$.
 - (U): For any $t \in D$, for any $u, v \in R$, if $(t, u) \in H$ and $(t, v) \in H$ then u = v.

Where we refer to (D, R, H) as h, we write u = h(t) exactly when $(t, u) \in H$.

- (c) Let D, R be sets, and $h: D \longrightarrow R$ be a function from D to R with graph H.
 - i. h is said to be **surjective** if the statement (S) below holds:

(S): For any $u \in R$, there exists some $t \in D$ such that $(t, u) \in H$.

ii. h is said to be **injective** if the statement (I) below holds:

(I): For any $u \in R$, for any $t, s \in D$, if $(t, u) \in H$ and $(s, u) \in H$ then t = s.

2. Definition for the notion of bijective function.

Let D, R be sets, and $h: D \longrightarrow R$ be a function from D to R. h is said to be **bijective** if h is both surjective and injective.

Remark. Hence h = (D, R, H) is a bijective function from D to R with graph H iff all of the statements (E), (U), (S), (I) below hold:

- (E): For any $t \in D$, there exists some $u \in R$ such that $(t, u) \in H$.
- (U): For any $t \in D$, for any $u, v \in R$, if $(t, u) \in H$ and $(t, v) \in H$ then u = v.
- (S): For any $u \in R$, there exists some $t \in D$ such that $(t, u) \in H$.

(I): For any $u \in R$, for any $t, s \in D$, if $(t, u) \in H$ and $(s, u) \in H$ then t = s.

3. Definition. (Notion of inverse function).

Let A, B be sets, and $f : A \longrightarrow B, g : B \longrightarrow A$ be functions. g is said to be an **inverse function** of f if both of the following statements hold:

(†) For any $x \in A$, $(g \circ f)(x) = x$. (†) For any $y \in B$, $(f \circ g)(y) = y$.

Definition. (Identity function.)

Let C be a set. Define the function $id_C : C \longrightarrow C$ by $id_C(z) = z$ for any $z \in C$. id_C is called the **identity function** on the set C.

Theorem (1). (Re-formulation of the definition of inverse function.)

Let A, B be sets, and $f: A \longrightarrow B$, $g: B \longrightarrow A$ be functions. The statements below are logically equivalent:

- (\star_0) g is an inverse function of f.
- (\star_1) $g \circ f = \operatorname{id}_A$ and $f \circ g = \operatorname{id}_B$ as functions.
- (\star_2) f is an inverse function of g.
- (\star_3) For any $x \in A$, for any $y \in B$, (y = f(x) iff x = g(y)).

4. Theorem (2). (Uniqueness of inverse function.)

Let A, B be sets, and $f: A \longrightarrow B$ be a function. f has at most one inverse function.

Theorem (3). (Necessary condition for existence of inverse function.)

Let A, B be sets, $f : A \longrightarrow B$ be a function. Suppose f has an inverse function, say, $g : B \longrightarrow A$. Then each of f, g is bijective.

Question. Is the necessary condition sufficient as well? Why?

Answer. Yes. Reason: Theorem (4).

5. Theorem (4). (Existence and Uniqueness of inverse function for a bijective function.)

Let A, B be sets, and $f : A \longrightarrow B$ be a function. Suppose f is bijective. Then there exists some unique bijective function $g : B \longrightarrow A$ such that g is the inverse function of f.

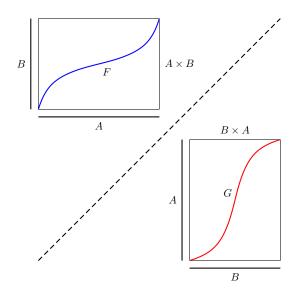
Convention on notations. Because of the uniqueness of g as the inverse function of a function f (when such exists), we agree to write g as f^{-1} .

6. Proof of Theorem (4).

Let A, B be sets, and $f: A \longrightarrow B$ be a function. Suppose f is bijective.

[Ask: How to write down an inverse function of f? What will its graph be?]

Denote by F the graph of f. Define $G = \{(y, x) \mid x \in A \text{ and } y \in B \text{ and } (x, y) \in F\}.$



By definition, $G \subset B \times A$. Moreover, the statement (\sharp) holds:

(\sharp): For any $t \in A$, for any $u \in B$, $((t, u) \in F \text{ iff } (u, t) \in G)$.

Define g to be the ordered triple (B, A, G). By definition, g is a relation from B to A with graph G. [We verify that g is a bijective function and g is an inverse function of f.]

Since $f: A \longrightarrow B$ is a bijective function, the following statements hold:

(E): For any $x \in A$, there exists some $y \in B$ such that $(x, y) \in F$.

(U): For any $x \in A$, for any $y, z \in B$, if $(x, y) \in F$ and $(x, z) \in F$ then y = z.

(S): For any $y \in B$, there exists some $x \in A$ such that $(x, y) \in F$.

(I): For any $y \in B$, for any $x, w \in A$, if $(x, y) \in F$ and $(w, y) \in F$ then x = w.

Consider the relation g = (B, A, G). [We are going to apply (\sharp) .]

By (S), the statement (E') holds: for any $y \in B$, there exists some $x \in A$ such that $(y, x) \in G$.

By (I), the statement (U') holds: for any $y \in B$, for any $x, w \in A$, if $(y, x) \in G$ and $(y, w) \in G$ then x = w. Therefore g is a function from B to A.

By (E), the statement (S') holds: for any $x \in A$, there exists some $y \in B$ such that $(y, x) \in G$.

Hence g is a surjective function.

By (U), the statement (I') holds: for any $x \in A$, for any $y, z \in B$, if $(y, x) \in G$ and $(z, x) \in G$ then y = z. Hence g is an injective function. It follows that g is a bijective function from B to A.

[Ask: Is g indeed an inverse function of f?]

Pick any $x \in A$, $y \in B$. Note that y = f(x) iff $(x, y) \in F$ iff $(y, x) \in G$ iff x = g(y). It follows from Theorem (1) that g is an inverse function of f. By Theorem (2), g is the unique inverse function of f.

7. Theorem (5).

Let A, B, C be sets and $f : A \longrightarrow B, g : B \longrightarrow C$ be bijective functions. The statements below hold:

- (a) $f^{-1} \circ f = \mathsf{id}_A$ and $f \circ f^{-1} = \mathsf{id}_B$.
- (b) For any $x \in A$, for any $y \in B$, y = f(x) iff $x = f^{-1}(y)$.
- (c) f^{-1} is a bijective function. Moreover, $(f^{-1})^{-1} = f$.
- (d) $g \circ f$ is a bijective function. Moreover, $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Remark. The proof of Theorem (5) is left as an exercise.