1. ‘In-formal’ definition for the notion of function.

Recall the in-formal definition for the notion of function’:
Let D, R be sets.

h is a function from D to R exactly when h is a ‘rule of assignment’ from D to R, so that
each element x of D is being assigned to exactly one element, namely h(x), of R.

D is called the domain of h. R is called the range of h.

Below are the ‘coordinate plane diagram’ and the ‘blobs-and-arrow diagram’ for such a

mathematical object, say, the function h : D — R.
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Here D = {m,n,o0,p,q,s,t,...}, R={c,e,i,j,k,...},

h(m)=e,h(n) =1,h(o) =i, h(p) =k, h(q) =k, h(s) =k, h(t)=k,---, and
the graph of h is the set H = {(m,e), (n,1), (0,7), (p, k), (¢, k), (s, k), (t, k), - }.



2. Problem in the ‘in-formal’ definition for the notion of function, and the
solution. '
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3. Towards the formal definition for the notion of function.

We expect the graph of a function to be necessarily a subset of the cartesian product of the
domain and the range.

However, it cannot be just any subset:
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(a) ‘First forbiddance’:

Subsets of D x R like the one below will not be allowed to be the graph of any function:
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The reason for this forbiddance is that some element of D, namely o, is being assigned
to no element of R.
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Towards the formal definition for the notion of function.

We expect the graph of a function to be necessarily a subset of the cartesian product of the
domain and the range.

However, it cannot be just any subset: ‘ | ‘
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(a) ‘First forbiddance’: ...

(b) ‘Second forbiddance’:
Subsets of D X R like the one below will not be allowed to be the graph of any function:
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The reason for this forbiddance is that some element of D, namely o, is being assigned
to distinct elements of R, namely 1, j.
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4. Definition. (Relations.)
Let J, K, L be sets.

The ordered triple (J, K, L) is called a relation from J to K with graph L if L be a
subset of J x K.

The sets J, K are respectively called the set of departure and the set of destination
of the relation (J, K, L).

Definition. (Functions as relations.)
Let D, R be sets, and H be a subset of D X R.

The relation (D, R, H) is said to be a function from domain D to range R with
graph H if both of the statements (E), (U) below hold:

(E): For any x € D, there exists some y € R such that (x,y) € H.
(U): For any x € D, for any y,z € R, if (x,y) € H and (x,z) € H then y = z.

Where we refer to (D, R, H) as h, we may write y = h(x) (or xTy) exactly when
(x,y) € H.



Definition. (Functions as relations.)
Let D, R be sets, and H be a subset of D X R.

The relation (D, R, H) is said to be a function from domain D to range R with
graph H if both of the statements (E), (U) below hold:

(E): For any x € D, there exists some y € R such that (x,y) € H.
(U): For any x € D, forany y,z € R, if (x,y) € H and (x,z) € H theny = z.

Remarks.

(a) It is through the graph H of the function h that we understand how h assigns the elements of its domain
D to its range R.

Condition (F) and Condition (U) are formulated to describe what we want H to satisfy as a subset of
D x R.
(b) In plain words, When Conditions (F), (U) read:
(E): Each element of D is assigned by h to at least one element of R.
(U): Each element of D is assigned by h to at most one element of R.
So Condition (F), (U) respectively guarantee that the ‘first forbiddance” and the ‘second forbiddance” are
upheld.
(¢) The conjunction ‘(F) and (U)’ reads:
(EU): Each element of D is assigned by h to exactly one element of R.

Thus we have ‘recovered’ the ‘in-formal definition for the notion of function’.



5. Defining a function by making a ‘declaration’.
When we define a function, say, f, from A to B, in ‘very simple’ situations, we often write
in this way:

e ‘Define the function f : A — B by f(x) = so-and-so.’
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6. Examples (A). | G ”‘?Mf hefuction $
(a) Define the function f : R — R by f(z) = x* for any » € R. {(x,w | xe RS
( .
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(b) Define the function f: R — R by f(z) =4 0 if =0 . §e-nls<efufeafuie] o
|1 it >0

(c) Let A = {p,q,7,5,t}, B = {u,v,w,x,y,z}. Define the function f : A — B by
fp) = flg) =w, fr) ==, f(s)=f{t) ==

Whenever we define a function in this way, we have to be careful with well-defined-ness
of a function.



7. Examples (B).
Which of the below ‘declarations’ makes sense? Which not? Why?
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(b) Define g : {g P, q E [[1,3]]} — R by 9(2—9) — p for any p,q € [1,3].
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(c) Define h : Q — R by h(]—?) — p whenever p € Z and q € Z\{0}.
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8. Examples (C).
Which of the below ‘declarations’ makes sense? Which not? Why?
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(b) Define g : {p ’ p,q € [1, 4]]} — R by g(t ) = z, henever s*,t" € [[1, 4] ond S,‘te])\j_
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(c) Define h : Q — R by h(r?) = r whenever r € Q.
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Examples (D).
Which of the below ‘declarations’ makes sense as a ‘formula of definition for a function’*

Which not? Why?

(a) Define f : € — R by f(z) = |#| for any z € C.
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(b) Define g : € — R by g(z) =i|z| for any z € C.
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9. Examples (E).
Write €* = C€\{0}. Here we wonder whether the below ‘declaration” makes sense:
e Define g : € — C* by g(z) = +/]z](cos(20) + isin(20)) whenever z € C* and 0 is an
argument of z.

Note that if ¢ is a function then its graph is given by the set

o

We proceed to check that g is well-defined as a function below:

Define the subset G of C* x C* by
G=10) z,( € C* and there exists some 0 € IR such that
B 71 2 = |2|(cos(0) +isin()) and ¢ = +/|z|(cos(26) + isin(20)) [
Define g = (C*, C*, G).
x [Does g satisfy Condition (E)?]
x [Does g satisfy Condition (U)?|

2, ¢ € €* and there exists some 6 € IR such that |
z = |z|(cos(0) + isin(0)) and ¢ = /|z|(cos(26) +isin(20)) |




