MATH1050 Notion of inverse functions

1. Definition.

Let A, B be sets, and $f: A \longrightarrow B$, $g: B \longrightarrow A$ be functions. g is said to be an inverse function of f if both of the following statements hold:

(a) For any $x \in A$, $(g \circ f)(x) = x$.

(b) For any $y \in B$, $(f \circ g)(y) = y$.

Definition.

Let C be a set. Define the function $\mathrm{id}_C : C \longrightarrow C$ by $\mathrm{id}_C(z) = z$ for any $z \in C$. id_C is called the **identity function** on the set C.

Remark 1 on the definition for the notion of inverse function.

By the respective definitions for the notions of inverse function, composition, and identity function:

 $g : B \longrightarrow A$ is an inverse function of $f : A \longrightarrow B$ iff $(g \circ f = id_A$ and $f \circ g = id_B$ as functions).

Remark 2 on the definition for the notion of inverse function.

Note the 'symmetry' in the definition for the notion of inverse function.

A consequence of this 'symmetry' is:

 $g : B \longrightarrow A$ is an inverse function of $f : A \longrightarrow B$ iff $f : A \longrightarrow B$ is an inverse function of $g : B \longrightarrow A$.

Remark 3 on the definition for the notion of inverse function.

How does such a function g 'interact' with f ? (First recall the notion of composition of functions.)

(a) Pick any $x \in A$. x is 'assigned' by f to $f(x)$.

But then $f(x)$ is 'assigned' by g to x.

x	$y = f(x)$	y	$x = g(y)$	x
A	f	B	g	A

So q 'cancels' what f does to x .

This is a formal way to tell the above story: for any $x \in A$, for any $y \in B$, if $y = f(x)$ then $x = g(y)$. (b) Pick any $y \in B$. y is 'assigned' by g to $g(y)$.

B y A x B x = g(y) g f

But then $g(y)$ is 'assigned' by f to y.

So f 'cancels' what g does to y .

This is a formal way to tell the above story: for any $y \in B$, for any $x \in A$, if $x = g(y)$ then $y = f(x)$. We may combine the above as: for any $x \in A$, for any $y \in B$, $(y = f(x)$ iff $x = g(y)$).

2. Theorem (1). (Re-formulation of the definition of inverse function.)

Let A, B be sets, and $f: A \longrightarrow B$, $g: B \longrightarrow A$ be functions. The statements below are logically equivalent:

- (\star_0) g is an inverse function of f.
- (\star_1) g \circ f = id_A and f \circ g = id_B as functions.
- (\star_2) f is an inverse function of q.
- (\star_3) For any $x \in A$, for any $y \in B$, $(y = f(x)$ iff $x = g(y)$).

Proof of Theorem (1).

Let A, B be sets, and $f : A \longrightarrow B$, $g : B \longrightarrow A$ be functions.

By definition, the statements $(\star_0), (\star_1), (\star_2)$ are logically equivalent:

(\star ₀) g is an inverse function of f. (\star ₁) g ◦ f = id_A and f ◦ g = id_B. (\star ₂) f is an inverse function of g.

We are going to verify that the statements $(\star_0), (\star_3)$ are logically equivalent:

(★0) g is an inverse function of f. (\star_3) For any $x \in A$, for any $y \in B$, $(y = f(x)$ iff $x = g(y)$.

• $[(\star_0) \Longrightarrow (\star_3)$?

Suppose g is an inverse function of f. Pick any $x \in A$, $y \in B$.

- Suppose $y = f(x)$. Then $q(y) = q(f(x)) = (q \circ f)(x) = x$ by definition of inverse function.
- ∗ Suppose $x = g(y)$. Then $f(x) = f(g(y)) = (f \circ g)(y) = y$ by definition of inverse function.
- It follows that $y = f(x)$ iff $x = g(y)$.
- $[(\star_3) \Longrightarrow (\star_0)$?

Suppose that for any $x \in A$, $y \in B$, $(y = f(x)$ iff $x = q(y)$.

- ∗ Pick any $s \in A$. Define $u = f(s)$. We have $u \in B$. By assumption $s = g(u)$. Then $(g \circ f)(s) = g(f(s))$ $g(u) = s.$
- \ast Pick any $v \in B$. Define $t = g(v)$. We have $t \in A$. By assumption $v = f(t)$. Then $(f \circ g)(v) = f(g(v))$ $f(t) = v.$

It follows that g is an inverse function of f .

3. Theorem (2). (Uniqueness of inverse function.)

Let A, B be sets, and $f: A \longrightarrow B$ be a function. f has at most one inverse function.

Proof of Theorem (2).

Let A, B be sets, and $f : A \longrightarrow B$ be a function. Suppose $g, h : B \longrightarrow A$ are inverse functions of f.

[We want to deduce that $g(y) = h(y)$ for any $y \in B$.]

Pick any $y \in B$. Define $x = g(y)$. We have $x \in A$. Then $y = f(g(y)) = f(x)$. Therefore $h(y) = h(f(x)) = x = g(y)$. It follows that q, h are the same function.

4. Definition.

Let D, R be sets and $h: D \longrightarrow R$ be a function. h is said to be **bijective** if h is both surjective and injective.

Remark. Hence h is bijective iff both of the statements (S) , (I) below hold:

- (S): For any $v \in R$, there exists some $u \in D$ such that $v = h(u)$.
- (I): For any $u, t \in D$, if $h(u) = h(t)$ then $u = t$.

5. Theorem (3). (Necessary condition for existence of inverse function.)

Let A, B be sets, $f : A \longrightarrow B$ be a function. Suppose f has an inverse function, say, $g : B \longrightarrow A$. Then each of f, g is bijective.

Proof of Theorem (3).

Let A, B be sets, $f: A \longrightarrow B$ be a function. Suppose f has an inverse function, say, $q: B \longrightarrow A$.

• [Ask: 'Is f surjective?']

Pick any $y \in B$. Define $x = g(y)$. We have $x \in A$. For the same x, y , we have $f(x) = f(g(y)) = y$. Therefore f is surjective.

• [Ask: 'Is f injective?']

Pick any $x, w \in A$. Suppose $f(x) = f(w)$. Then $x = g(f(x)) = g(f(w)) = w$. Therefore f is injective.

By definition, q is an inverse function of f. Then by Theorem (1) , q has an inverse function, namely, f. It follows from the argument above that q is both surjective and injective.

Remark. The natural question to ask is: Is the necessary condition sufficient?