1. Definition.

Let A, B be sets, and $f: A \longrightarrow B, g: B \longrightarrow A$ be functions. g is said to be an **inverse function** of f if both of the following statements hold:

(a)

For any $x \in A$, $(g \circ f)(x) = x$. (b) For any $y \in B$, $(f \circ g)(y) = y$.

Definition.

Let C be a set.

Define the function $id_C: C \longrightarrow C$ by $id_C(z) = z$ for any $z \in C$. id_C is called the identity function on the set C.

Remark 1 on the definition for the notion of inverse function.

By the respective definitions for the notions of inverse function, composition, and identity function:

> $g: B \longrightarrow A$ is an inverse function of $f: A \longrightarrow B$ (got = id and fog = id B as functions)

Definition.

Let A, B be sets, and $f: A \longrightarrow B$, $g: B \longrightarrow A$ be functions. g is said to be an **inverse function** of f if both of the following statements hold:

(a)

For any $x \in A$, $(g \circ f)(x) = x$. (b) For any $y \in B$, $(f \circ g)(y) = y$.

Remark 2 on the definition for the notion of inverse function.

See the 'symmetry' in the definition: simultaneously interchange

'A' and 'B',

• 'f' and 'g',

• 'x' and 'y'.

What do we get?

Consequence of this 'symmetry' in the definition:

 $g: B \longrightarrow A$ is an inverse function of $f: A \longrightarrow B$

 $f:A \longrightarrow B$ is an inverse function of $g:B \longrightarrow A$.

Definition.

Let A, B be sets, and $f: A \longrightarrow B$, $g: B \longrightarrow A$ be functions. g is said to be an **inverse function** of f if both of the following statements hold:

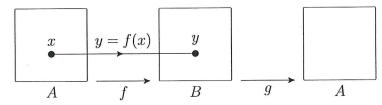
(a)

For any $x \in A$, $(g \circ f)(x) = x$. (b) For any $y \in B$, $(f \circ g)(y) = y$.

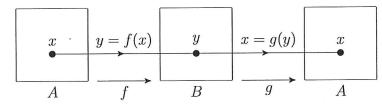
Remark 3 on the definition for the notion of inverse function.

How does such a function g 'interact' with f?

(a) Pick any $x \in A$. x is 'assigned' by f to f(x).

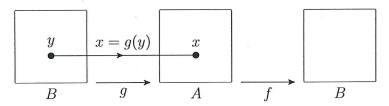


But then f(x) is 'assigned' by g to x.

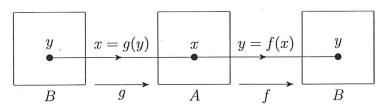


So g 'cancels' what f does to x.

(b) Pick any $y \in B$. y is 'assigned' by g to g(y).



But then q(y) is 'assigned' by f to y.



So f 'cancels' what q does to y.

Formal formulation: For any $x \in A$, for any $y \in B$, (y = f(x)) iff x = g(y).

2. Theorem (1). (Re-formulation of the definition of inverse function.)

Let A, B be sets, and $f: A \longrightarrow B$, $g: B \longrightarrow A$ be functions.

The statements below are logically equivalent:

- (\star_0) g is an inverse function of f.
- (\star_1) $g \circ f = id_A$ and $f \circ g = id_B$ as functions.
- (\star_2) f is an inverse function of g.
- (\star_3) For any $x \in A$, for any $y \in B$, (y = f(x) iff x = g(y)).

Proof of Theorem (1).

Let A, B be sets, and $f: A \longrightarrow B, g: B \longrightarrow A$ be functions.

Logical equivalence amongst (\star_0) , (\star_1) , (\star_2) : see Remark 1, Remark 2 above.

- $[(\star_0) \Longrightarrow (\star_3)?]$ Exercise: carefully formulate the idea in Remark 3 above.
- $[(\star_3) \Longrightarrow (\star_0)?]$ Suppose that for any $x \in A$, $y \in B, (y = f(x) \text{ iff } x = g(y)).$

* Pick any $s \in A$. [Try to deduce: $(g \circ f)(s) = s$.]

Define u = f(s). We have $u \in B$. By assumption, s = g(u). Then $(g \circ f)(s) = g(f(s)) = g(u) = S$.

* Pick any $v \in B$. [Try to deduce: $(f \circ g)(v) = v$.]

Define t = g(v). We have $t \in A$. By assumption, v = f(t). Then $(f \circ g)(v) = f(g(v)) = f(t) = V$.

It follows that g is an inverse function of f.

3. Theorem (2). (Uniqueness of inverse function.)

Let A, B be sets, and $f: A \longrightarrow B$ be a function. f has at most one inverse function.

Proof of Theorem (2).

Let A, B be sets, and $f: A \longrightarrow B$ be a function.

Suppose $g, h : B \longrightarrow A$ are inverse functions of f.

[We want to deduce that g(y) = h(y) for any $y \in B$.]

Pick any $y \in B$.

Define x = g(y). We have $x \in A$.

Then $y = (f \circ g)(y)$ = f(g(y)) = f(x).Therefore $h(y) = h(f(x)) = (h \circ f)(x)$ = g(y).It follows that g = h as functions.

Ask: What do we want to prove?
What is 'uniqueness'?
Answer. We want to prove:

There are two functions
from B to A, both
serving as inverse functions
of f, then they are
the same as each other
as functions.

4. Definition.

Let D, R be sets and $h: D \longrightarrow R$ be a function. h is said to be **bijective** if h is both surjective and injective.

Remark.

Hence h is bijective iff both of the statements (S), (I) below hold:

(S): For any $v \in R$, there exists some $u \in D$ such that v = h(u).

(I): For any $u, t \in D$, if h(u) = h(t) then u = t.

5. Theorem (3). (Necessary condition for existence of inverse function.)

Let A, B be sets, $f: A \longrightarrow B$ be a function.

Suppose f has an inverse function, say, $g: B \longrightarrow A$.

Then each of f, g is bijective.

Proof of Theorem (3).

Let A, B be sets, $f: A \longrightarrow B$ be a function.

Suppose f has an inverse function, say, $g: B \longrightarrow A$.

• ['Is f surjective?'] [Want to deduce: For any y \in B, there exists some x \in A such that y = f(x).]

Pick any yeB. Define x=g(y). By definition, x ∈ A.

For the same $x \in A$, $y \in B$, we have $f(x) = f(g(y)) = (f \circ g)(y) \supseteq y$. Hence f is swjective.

· ['Is f injective?'] [Want to deduce: For any x, w ∈ A, if f(x) = f(w) then x = w.]

Pick any x, we A. Suppose f(x)=f(w). Then

 $x = (g \circ f)(x) = g(f(x)) = g(f(w)) = (g \circ f)(w) = w.$ Hence f is injective.

By definition, g is an inverse function of f. Then by Theorem (1), g has an inverse function,

namely, f.

It follows from the argument above that g is both surjective and injective.

Remark. The natural question to ask is: Is the necessary condition sufficient?

Answer. Yes, but ...