1. Definitions.

Let A, B be sets and $f: A \longrightarrow B$ be a function from A to B.

(a) Let S be a subset of A. The image set of the set S under the function f is defined to be the set $\{y \in B : \text{There exists some } x \in S \text{ such that } y = f(x)\}.$

It is denoted by f(S).

(b) Let U be a subset of B. The pre-image set of the set U under the function f is defined to be the set $\{x \in A : \text{There exists some } y \in U \text{ such that } y = f(x)\}.$

It is denoted by $f^{-1}(U)$.

2. Theorem (1).

Let A, B be sets, and $f: A \longrightarrow B$ be a function. The following statements hold:

- (1a) $f(\emptyset) = \emptyset$.
- $(1b) \ f^{-1}(\emptyset) = \emptyset.$
- (1c) $f(A) \subset B$.
- (1d) $f^{-1}(B) = A$.
- (1e) Let $x \in A$. $f(\{x\}) = \{f(x)\}$.
- (1f) Let $x \in A$, $y \in B$. The statements below are logically equivalent:
 - (i) $x \in f^{-1}(\{y\})$.
 - (ii) $f(x) \in \{y\}.$
 - (iii) f(x) = y.

The proof of Theorem (1) is left as an exercise.

3. Theorem (2).

Let A, B be sets, and $f: A \longrightarrow B$ be a function. The following statements hold:

- (2a) Let S, T be subsets of A. Suppose $S \subset T$. Then $f(S) \subset f(T)$.
- (2b) Let H, K be subsets of A.
 - (1) $f(H \cup K) \supset f(H) \cup f(K)$.
 - (2) $f(H \cup K) \subset f(H) \cup f(K)$.
 - $(3) f(H \cup K) = f(H) \cup f(K).$
- (2c) Let H, K be subsets of A. $f(H \cap K) \subset f(H) \cap f(K)$.

We give the proof of Theorem (2) below.

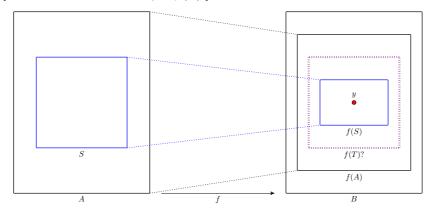
4. Proof of Statement (2a) of Theorem (2) (with pictures).

Let A, B be sets and $f: A \longrightarrow B$ be a function. Let S, T be subsets of A. Suppose $S \subset T$. [We want to deduce that $f(S) \subset f(T)$. What to do, really? We want to prove:

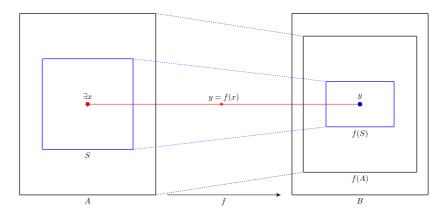
'for any object y, if $y \in f(S)$ then $y \in f(T)$.'

Think about this before proceeding any further.]

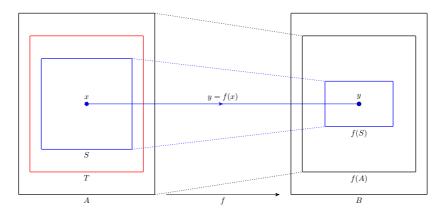
(1) Pick any object y. [From now on, this y is fixed.] Suppose $y \in f(S)$. [We want to deduce that $y \in f(T)$.]



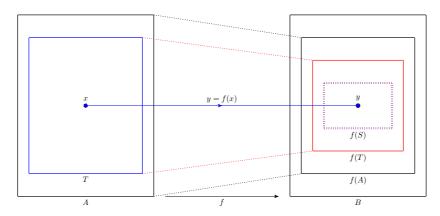
(2) Then [according to the definition of image sets,] there exists some $x \in S$ such that y = f(x). [What does it say about x, y?]



(3) Since $x \in S$ and $S \subset T$, we have $x \in T$ [according to the definition of subsets].



(4) For the same x, y, since $x \in T$ and y = f(x), we have $y \in f(T)$ [according to the definition of image sets].



It follows that $f(S) \subset f(T)$.

Proof of Statement (2a) of Theorem (2) (without pictures).

Let A, B be sets and $f: A \longrightarrow B$ be a function. Let S, T be subsets of A. Suppose $S \subset T$. [We want to deduce that $f(S) \subset f(T)$.]

Pick any object y.

Suppose $y \in f(S)$. [We want to deduce that $y \in f(T)$.]

Then there exists some $x \in S$ such that y = f(x).

Since $x \in S$ and $S \subset T$, we have $x \in T$.

For the same x, y, since $x \in T$ and y = f(x), we have $y \in f(T)$.

It follows that $f(S) \subset f(T)$.

Very formal proof of Statement (2a) of Theorem (2).

Let A, B be sets and $f: A \longrightarrow B$ be a function. Let S, T be subsets of A. Suppose $S \subset T$. [We want to deduce that $f(S) \subset f(T)$.] Pick any object y.

• [We want to prove that if $y \in f(S)$ then $y \in f(T)$.]

I. Suppose $y \in f(S)$. [Assumption.]

II. $S \subset T$. [Assumption.]

III. There exists some $x \in S$ such that y = f(x). [I, definition of image sets.]

IV. $x \in S$. [III.]

 $V. x \in T. [II, IV, definition of subsets.]$

VI. y = f(x). [**III**.]

VII. $y \in f(T)$. [V, VI, definition of image sets.]

It follows that $f(S) \subset f(T)$.

5. Proof of Statement (2b) of Theorem (2).

Let A, B be sets and $f: A \longrightarrow B$ be a function. Let H, K be subsets of A.

(1) [We want to prove that $f(H) \cup f(K) \subset f(H \cup K)$.]

By (2a), since $H \subset H \cup K$, we have $f(H) \subset f(H \cup K)$.

Also by (2a), since $K \subset H \cup K$, we have $f(K) \subset f(H \cup K)$.

Then $f(H) \cup f(K) \subset f(H \cup K)$. [Why?]

(2) [We want to prove that $f(H \cup K) \subset f(H) \cup f(K)$. What does it amount to? Focus on ' \subset '.

We want to prove:

'for any object y, if $y \in f(H \cup K)$ then $y \in f(H) \cup f(K)$.'

Think about it before proceeding any further.]

Pick any object y. Suppose $y \in f(H \cup K)$. [We want to deduce that $y \in f(H) \cup f(K)$.]

[Now make use of the definition of image sets.] There exists some $x \in H \cup K$ such that y = f(x). [What does it say about x, y?]

Since $x \in H \cup K$, we have $x \in H$ or $x \in K$.

- * (Case 1). Suppose $x \in H$. Since y = f(x) and $x \in H$, we have $y \in f(H)$. Then $y \in f(H)$ or $y \in f(K)$.
- * (Case 2). Suppose $x \in K$. Modifying the argument for (Case 1), we also deduce that $y \in f(H)$ or $y \in f(K)$.

Hence, in any cases, we have $y \in f(H) \cup f(K)$. It follows that $f(H \cup K) \subset f(H) \cup f(K)$.

(3) By (2b1), (2b2), we have $f(H \cup K) = f(H) \cup f(K)$.

6. Proof of Statement (2c) of Theorem (2).

Let A, B be sets and $f: A \longrightarrow B$ be a function. Let H, K be subsets of A. [We want to prove $f(H \cap K) \subset f(H) \cap f(K)$. Focus on ' \subset '.]

• [We apply (2a).]

Since $H \cap K \subset H$, we have $f(H \cap K) \subset f(H)$.

Since $H \cap K \subset K$, we have $f(H \cap K) \subset f(K)$.

Then $f(H \cap K) \subset f(H) \cap f(K)$.

7. Theorem (3).

Let A, B be sets, and $f: A \longrightarrow B$ be a function. The following statements hold:

- (3a) Let U, V be subsets of B. Suppose $U \subset V$. Then $f^{-1}(U) \subset f^{-1}(V)$.
- (3b) Let U, V be subsets of B.
 - (1) $f^{-1}(U \cup V) \supset f^{-1}(U) \cup f^{-1}(V)$.
 - (2) $f^{-1}(U \cup V) \subset f^{-1}(U) \cup f^{-1}(V)$.
 - (3) $f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V)$.
- (3c) Let U, V subsets of B.
 - (1) $f^{-1}(U \cap V) \subset f^{-1}(U) \cap f^{-1}(V)$.
 - (2) $f^{-1}(U \cap V) \supset f^{-1}(U) \cap f^{-1}(V)$.
 - (3) $f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(V)$.

We give the proof of Statement (3b2) of Theorem (3) below. The proof of the rest of Theorem (3) is left as exercises.

8. Proof of Statement (3b2) of Theorem (3).

Let A, B be sets, and $f: A \longrightarrow B$ be a function. Let U, V be subsets of B.

[We want to prove that $f^{-1}(U \cup V) \subset f^{-1}(U) \cup f^{-1}(V)$.

What to do, really? We want to prove:

'for any object x, if $x \in f^{-1}(U \cup V)$ then $x \in f^{-1}(U) \cup f^{-1}(V)$.'

Think about this before proceeding any further.]

Pick any object x.

Suppose $x \in f^{-1}(U \cup V)$. Then [according to the definition of pre-image sets,] there exists some $y \in U \cup V$ such that y = f(x).

Since $y \in U \cup V$, we have $y \in U$ or $y \in V$ [according to the definition of unions].

- * (Case 1). Suppose $y \in U$. [Recall y = f(x).] Then y = f(x) for this $y \in U$. Therefore $x \in f^{-1}(U)$ [according to the definition of pre-image sets].
- * (Case 2). Suppose $y \in V$. [Recall y = f(x).] Then y = f(x) for this $y \in V$. Therefore $x \in f^{-1}(V)$ [according to the definition of pre-image sets].

Now $x \in f^{-1}(U)$ or $x \in f^{-1}(V)$. Therefore $x \in f^{-1}(U) \cup f^{-1}(V)$ [according to the definition of unions].

It follows that $f^{-1}(U \cup V) \subset f^{-1}(U) \cup f^{-1}(V)$.

9. Remark.

Which of the statements is true? Which not?

- (a) Let A, B be sets, and $f: A \longrightarrow B$ be a function. Let S, T be subsets of A. Suppose $f(S) \subset f(T)$. Then $S \subset T$.
- (b) Let A, B be sets, and $f: A \longrightarrow B$ be a function. Let U, V be subsets of B. Suppose $f^{-1}(U) \subset f^{-1}(V)$. Then $U \subset V$.
- (c) Let A, B be sets, and $f: A \longrightarrow B$ be a function. Let H, K be subsets of A. $f(H \cap K) \supset f(H) \cap f(K)$.

They are all false. (Can you provide counter-examples for the respective dis-proofs?)

10. **Theorem (4)**.

Let A, B, C be sets, and $f: A \longrightarrow B, g: B \longrightarrow C$ be functions. The following statements hold:

- (4a) Let S be a subset of A. $(g \circ f)(S) = g(f(S))$.
- (4b) Let W be a subset of C. $(g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W))$.

We give the proof of Statement (4b) below; the proof of Statement (4a) is left as an exercise.

11. Proof of Statement (4b) of Theorem (4).

Let A, B, C be sets, and $f: A \longrightarrow B, g: B \longrightarrow C$ be functions. Let W be a subset of C.

[We want to prove the set equality $(g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W))$.

Hence we separate arguments into two parts, each on a 'subset relation'.

Which two?

 $(\alpha) \ (g \circ f)^{-1}(W) \subset f^{-1}(g^{-1}(W)).$

This reads:

'for any object x, if $x \in (g \circ f)^{-1}(W)$ then $x \in f^{-1}(g^{-1}(W))$.'

 $(\beta) \ (g \circ f)^{-1}(W) \supset f^{-1}(g^{-1}(W)).$

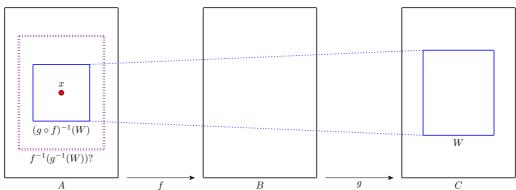
This reads:

'for any object x, if $x \in f^{-1}(g^{-1}(W))$ then $x \in (g \circ f)^{-1}(W)$.'

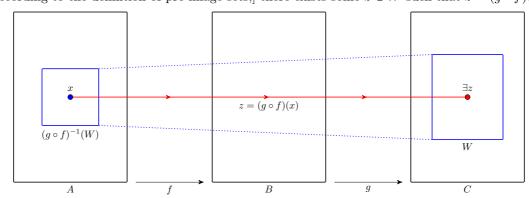
Think about this before proceeding any further.]

- (α) [We are going to prove that $(g \circ f)^{-1}(W) \subset f^{-1}(g^{-1}(W))$.]
 - (1) Pick any object x.

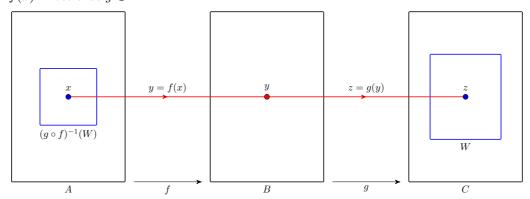
Suppose that $x \in (g \circ f)^{-1}(W)$. [We want to deduce that $x \in f^{-1}(g^{-1}(W))$.]



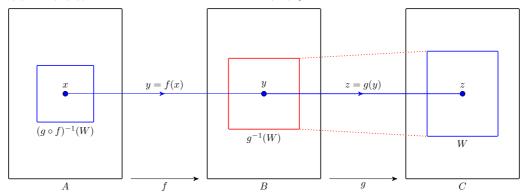
(2) Then [according to the definition of pre-image sets,] there exists some $z \in W$ such that $z = (g \circ f)(x)$.



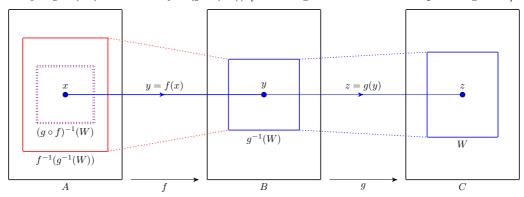
(3) We have z = g(f(x)) [by the definition of composition of functions]. Take y = f(x). Note that $y \in B$.



(4) We have g(y) = g(f(x)) = z and $z \in W$. Then $y \in g^{-1}(W)$ [according to the definition of pre-image sets].



(5) f(x) = y and $y \in g^{-1}(W)$. Then $x \in f^{-1}(g^{-1}(W))$ [according to the definition of pre-image sets].



(β) [We are going to prove that $(g \circ f)^{-1}(W) \supset f^{-1}(g^{-1}(W))$.] Pick any object x. Suppose $x \in f^{-1}(g^{-1}(W))$. [We want to deduce that $x \in (g \circ f)^{-1}(W)$.] Then [according to the definition of pre-image sets,] there exists some $y \in g^{-1}(W)$ such that y = f(x). Now $y \in g^{-1}(W)$. Then [according to the definition of pre-image sets,] there exists some $z \in W$ such that z = g(y). We have $z = g(y) = g(f(x)) = (g \circ f)(x)$ and $z \in W$. Then [according to the definition of pre-image sets,] we have $x \in (g \circ f)^{-1}(W)$.

It follows that $(g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W)).$

12. **Theorem (5)**.

Let A, B be sets, and $f: A \longrightarrow B$ be a function. The following statements hold:

- (5a) Let S be a subset of A. $f^{-1}(f(S)) \supset S$.
- (5b) Let U be a subset of B. $f(f^{-1}(U)) \subset U$.
- (5c) Let S be a subset of A. $f(f^{-1}(f(S))) = f(S)$.
- (5d) Let U be a subset of B. $f^{-1}(f(f^{-1}(U))) = f^{-1}(U)$.
- (5e) Let S be a subset of A, and U be a subset of B. $f(S \cap f^{-1}(U)) = f(S) \cap U$.

The proof of Theorem (5) is left as an exercise.

13. **Definition.**

Let A, B be sets and $f: A \longrightarrow B$ be a function. f is said to be surjective if the statement (S) holds:

(S): For any $y \in B$, there exists some $x \in A$ such that y = f(x).

Theorem (6). (Characterizations of surjectivity).

Let A, B be sets and $f: A \longrightarrow B$ be a function. The following statements are equivalent:

- (I) f is surjective.
- (Ia) f(A) = B.
- (Ib) $f(A) \supset B$.
- (II) For any subset U of B, $f(f^{-1}(U)) \supset U$.
- (IIa) For any subset U of B, $f(f^{-1}(U)) = U$.
- (III) For any subset U of B, there exists some subset S of A such that U = f(S).
- (IV) For any subset T of A, $f(A \setminus T) \supset B \setminus f(T)$.
- (V) For any subset U, V of B, if $f^{-1}(U) \subset f^{-1}(V)$ then $U \subset V$.
- (VI) For any subset U, V of B, if $f^{-1}(U) = f^{-1}(V)$ then U = V.

Proof of Theorem (6). Let A, B be sets and $f: A \longrightarrow B$ be a function.

- The justification for the equivalence of (I), (Ia), (Ib) is a simple 'game of words'. The justification for the equivalence of (II), (IIa) is also a simple 'game of words'. They are left as exercises.
- ['(I) \Longrightarrow (II)'?] Suppose (I) holds. Let U be a subset of B. [We want to deduce that for any object y, if $y \in U$ then $y \in f(f^{-1}(U))$.]

Pick any object y. Suppose $y \in U$. [We want to deduce that $y \in f(f^{-1}(U))$.] Since f is surjective, there exists some $x \in A$ such that y = f(x). Since y = f(x) and $y \in U$, we have $x \in f^{-1}(U)$. Since y = f(x) and $x \in f^{-1}(U)$, we have $y \in f(f^{-1}(U))$.

It follows that $f(f^{-1}(U)) \supset U$.

- ['(II) \Longrightarrow (III)'?] Suppose that (II) holds. Let U be a subset of B. Take $S = f^{-1}(U)$. $S \subset A$ and $f(S) = f(f^{-1}(U)) = U$.
- ['(III) \Longrightarrow (I)'?] Suppose that (III) holds. Note that B is a subset of B. Then there exists some subset S of A such that B = f(S). Since $S \subset A$, we have $B = f(S) \subset f(A)$. Hence f is surjective.
- ['(I) \Longrightarrow (IV)'?] Suppose that (I) holds. Let T be a subset of A. Pick any object y. Suppose $y \in B \setminus f(T)$. Then $y \in B$ and $y \notin f(T)$. By surjectivity, there exists some $x \in A$ such that y = f(x). We claim that $x \in A \setminus T$:

[Justification using proof-by-contradiction.] Suppose it were true that $x \notin A \setminus T$. Then $x \in T$. We would then have $y = f(x) \in f(T)$. But $y \notin f(T)$ in the first place. Contradiction arises.

Now $x \in A \backslash T$. Therefore $y = f(x) \in f(A \backslash T)$. It follows that $B \backslash f(T) \subset f(A \backslash T)$.

- ['(IV) \Longrightarrow (I)'?] Suppose that (IV) holds. Then $f(A) = f(A \setminus \emptyset) \supset B \setminus f(\emptyset) = B \setminus \emptyset = B$.
- $['(I) \Longrightarrow (V)'?]$ Exercise.
- $[(V) \Longrightarrow (VI)]$ Exercise: game of words.
- $['(VI) \Longrightarrow (I)'?]$ Exercise.

14. **Definition.**

Let A, B be sets and $f: A \longrightarrow B$ be a function. f is said to be **injective** if the statement (I) holds:

(I): For any
$$x, w \in A$$
, if $f(x) = f(w)$ then $x = w$.

Theorem (7). (Characterizations of injectivity).

Let A, B be sets and $f: A \longrightarrow B$ be a function. The following statements are equivalent:

- (I) f is injective.
- (II) For any subset S of A, $f^{-1}(f(S)) \subset S$.
- (IIa) For any subset S of A, $f^{-1}(f(S)) = S$.
- (III) For any subset S of A, there exists some subset U of B such that $S = f^{-1}(U)$.
- (IV) For any subset S, T of A, $f(S \cap T) \supset f(S) \cap f(T)$.
- (IVa) For any subset S, T of A, $f(S \cap T) = f(S) \cap f(T)$.
 - (V) For any subsets S, T of A, if $f(S) \subset f(T)$ then $S \subset T$.
- (VI) For any subsets S, T of A, if f(S) = f(T) then S = T.

The proof of Theorem (7) is left as an exercise.

15. Theorem (8).

Let A, B be sets and $f: A \longrightarrow B$ be a function.

- (8a) Let $\{U_n\}_{n=0}^{\infty}$ be an infinite sequence of subsets of B. $(\{f^{-1}(U_n)\}_{n=0}^{\infty}$ is an infinite sequence of subsets of A.) The following statements hold:
 - (1) $f^{-1}(\bigcap_{n=0}^{\infty} U_n) = \bigcap_{n=0}^{\infty} f^{-1}(U_n).$
 - (2) $f^{-1}(\bigcup_{n=0}^{\infty} U_n) = \bigcup_{n=0}^{\infty} f^{-1}(U_n).$
- (8b) Let $\{S_n\}_{n=0}^{\infty}$ be an infinite sequence of subsets of A. $(\{f(S_n)\}_{n=0}^{\infty}$ is an infinite sequence of subsets of B.) The following statements hold:
 - (1) $f(\bigcap_{n=0}^{\infty} S_n) \subset \bigcap_{n=0}^{\infty} f(S_n).$
 - (2) $f(\bigcup_{n=0}^{\infty} S_n) = \bigcup_{n=0}^{\infty} f(S_n).$
- (8c) The statements below are logically equivalent:
 - (i) f is injective.
 - (ii) For any infinite sequence of subsets $\{S_n\}_{n=0}^{\infty}$ of A, $f(\bigcap_{n=0}^{\infty} S_n) = \bigcap_{n=0}^{\infty} f(S_n)$.

The proof of Theorem (8) is left as an exercise (in quantifiers).