1. Definition.

Suppose $f: D \longrightarrow \mathbb{R}$ is a function, whose domain D is a subset of \mathbb{R}^n .

For each point $c \in \mathbb{R}$, the set $f^{-1}(\{c\})$ is called the **level set** of f at c.

Remark. By definition, $f^{-1}(\lbrace c \rbrace) = \lbrace x \in \mathbb{R}^n : f(x) = c \rbrace$. Hence the level set of f at c is the solution set of the equation $f(u) = c$ with unknown u in \mathbb{R}^n ,

2. Curves as level sets.

Suppose $n = 2$. Suppose D is a 'nice' subset of \mathbb{R}^2 (for example, an open subset of \mathbb{R}^2), and f is 'nice' (for example, being continuously differentiable, and with 'very few' 'zeros' in its gradient).

Because f is so 'nice', 'many' a non-empty level set $f^{-1}(\lbrace c \rbrace)$ will also look 'nice' (for example, appearing as a 'nice' 'continuous curve') on \mathbb{R}^2 . We can draw the various level sets of such a function f on \mathbb{R}^2 . Such a picture resembles a 'contour map' in an atlas which displays the shape of the landscape of a region by showing the contours of equal altitude. Through such a picture we can visualize the graph of f.

3. Examples of curves as level sets.

(a) Define the function $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ by $f(x, y) = x^2 + y^2$ for any $x, y \in \mathbb{R}$.

What are its level sets? How does the 'contour map' look like? How does the graph of f look like?

- When $c > 0$, $f^{-1}(\lbrace c \rbrace)$ is the circle with radius \sqrt{c} centred at origin.
- When $c < 0$, $f^{-1}(\{c\}) = \emptyset$.
- $f^{-1}(\{0\}) = \{(0,0)\}.$

The 'contour map' shows the family of concentric circles $\gamma_c : x^2 + y^2 = c$ with common centre (0,0), including the 'degenerate case' $x^2 + y^2 = 0$.

The graph of f is the circular paraboloid $z = x^2 + y^2$ with the z-axis being the axis of symmetry.

- (b) Define the function $g : \mathbb{R}^2 \longrightarrow \mathbb{R}$ by $g(x, y) = x^2 y^2$ for any $x, y \in \mathbb{R}$.
	- What are its level sets? How does the 'contour map' look like? How does the graph of g look like?
		- When $c > 0$, $g^{-1}(\{c\})$ is the hyperbola $x^2 y^2 = c$.
		- When $c < 0$, $g^{-1}(\lbrace c \rbrace)$ is the hyperbola $-x^2 + y^2 = -c$.
		- $g^{-1}(\{0\})$ is the pair of straight lines $y = x, y = -x$.

The 'contour map' shows the family of hyperbolae $\eta_c : x^2 - y^2 = c$ with common centre (0,0), including the 'degenerate case' $x^2 - y^2 = 0$.

The graph of g is the hyperbolic paraboloid $z = x^2 - y^2$, which looks like a 'saddle', 'going up' on both sides of the x-axis and 'going down' on both sides of the y-axis.

4. Surfaces as level sets.

Suppose $n = 3$. Suppose D is a 'nice' subset of \mathbb{R}^3 (for example, an open subset of \mathbb{R}^3), and f is 'nice' (for example, being continuously differentiable, and with a Jacobian matrix which is full-rank throughout \tilde{D} except at a few points of D).

Because f is so 'nice', 'many' a non-empty level set $f^{-1}(\lbrace c \rbrace)$ will also look 'nice' (for example, appearing as a 'nice' surface) in \mathbb{R}^3 . We can draw the various level sets of such a function f on \mathbb{R}^3 . Through such a picture we can visualize the graph of f .

5. Examples of surfaces as level sets.

- (a) Define the function $f : \mathbb{R}^3 \longrightarrow \mathbb{R}$ by $f(x, y, z) = x^2 + y^2 + z^2$ for any $x, y, z \in \mathbb{R}$. What are the level sets of f? How does the 'contour map' look like?
	- When $c > 0$, $f^{-1}(\lbrace c \rbrace)$ is the sphere with radius \sqrt{c} centred at origin.
	- When $c < 0$, $f^{-1}(\{c\}) = \emptyset$.
	- $f^{-1}(\{0\}) = \{(0,0,0)\}.$

The 'contour map' shows the family of concentric spheres $\sigma_c : x^2 + y^2 + z^2 = c$ with common centre $(0,0,0)$, including the 'degenerate case' $x^2 + y^2 + z^2 = 0$.

- (b) Define the function $g : \mathbb{R}^3 \longrightarrow \mathbb{R}$ by $g(x, y, z) = x^2 + y^2 z^2$ for any $x, y, z \in \mathbb{R}$. What are the level sets of g ? How does the 'contour map' look like?
	- $g^{-1}(\{0\})$ is a cone with apex at origin, obtained by rotating about the z-axis the line $z = x$ on the xz-plane.
	- When $c > 0$, $g^{-1}(\lbrace c \rbrace)$ is the hyperboloid of one sheet, obtained by rotating about the z-axis the hyperbola $x^2 - z^2 = c$ on the xz-plane.
	- When $c < 0$, $g^{-1}(\lbrace c \rbrace)$ is a hyperboloid of two sheets, obtained by rotating about the z-axis the hyperbola $-x^2 + z^2 = -c$ on the xz-plane.

6. Appendix: quadrics.

Let Q be an $m \times m$ -symmetric matrix, P be an $m \times 1$ -matrix, R be a real number, and $h : \mathbb{R}^m \longrightarrow \mathbb{R}$ be the function defined by $h(x) = x^t Q x + P^t x + R$ for any $x \in \mathbb{R}^m$. The pre-image set $h^{-1}(\{0\})$ is called a **quadric**. Examples of quadrics.

 \bullet $m=2.$

Ellipses (including circles), parabolae, hyperbolae; pairs of straight lines.

These are 'curves': they are 'one-dimensional' geometric objects 'sitting' in a 'two-dimensional space'.

 \bullet $m=3$.

Ellipsoids (including spheres), paraboloids, hyperboloids; cylinders, cones.

These are 'surfaces': they are 'two-dimensional' geometric objects 'sitting' in a 'three-dimensional space'.

• The set of all 'infinite' straight lines in the 'infinite' space can be viewed as the points on a quadric known as the Klein quadric.

It turns out to be a 'four-dimensional' geometric object 'sitting' in a 'five dimensional space'.

Differential geometry and algebraic geometry begin with the study of these geometric objects, using tools from calculus and algebra respectively.