MATH1050 Parametrizations for curves and surfaces

1. In school maths we encountered the notion of locus for a ‘point particle’ ‘moving’ in a plane or in the space. For
instance, consider the passage below:

e A ‘point particle’ is moving in the plane from time a to time b. At any time t, its position in the plane is given
by the coordinates (u(t),v(t)). ---

Translated into the the language of function, what this passage is about is the function f : [a,b] — IR? given
f(@) = (u(t),v(t)) for any ¢ € [a,b]. The position of the ‘point particle’ ‘at time ¢’ is the value of f(¢). The locus of
the ‘point particle’ is the image set of [a,b] under f.

So we did actually come across the notion of image set under a function, without knowing its name.

2. Parametrized curves.

Suppose we are given a ‘nice’ curve C in IR™. To ‘describe’ it we may think of the curve C' (except perhaps a few
points) as the image set of some subset I of R, under some function f of one real variable. Very often I is so nice
that it is an interval. f is so nice that it is differentiable, (or even better, smooth), and when it is restricted to I, it
is injective.

In this sense we say we are ‘parametrizing’ the curve C; the ‘parametrization’ under question is the function f.
Equivalently C' is the ‘trace’ of the ‘parametrized curve’ f. When the points in the set [ is interpreted as time, the
curve C' is the locus of some ‘point particle’ moving in the plane/space according to some rule specified by the function

f-
3. Examples of parametrized curves.
(a) Let p € R™, v € R"\{0}. (Think of p,v as vectors.)

Define the function f : IR — R™ by f(¢) = p + tv for any t € RR.
f(R) is the ‘infinite’ straight line in IR™ passing through p and being parallel to v.

Suppose a,b € R, and a < b. f([a,b]) is the line segment joining the points p + av, p + bu.
(b) Let a,b € (0,400).

Define the function g : (—m,7) — IR? by g(t) = (acos(t), bsin(t)) for any t € (—m, 7).
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g ‘parametrizes’ the ellipse — + Z—Z = 1 with the point (—a,0) removed.
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Suppose 0,7 € (—m,7), and o < 7. g([o,7]) is the ‘elliptic arc’ of ‘between t = o and t = 7.



(c) Let a,b € (0,400).
Define the function g : R — R? by g(¢) = (acosh(t), bsinh(t)) for any ¢ € R.
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g ‘parametrizes’ one branch of the hyperbola =1.

Suppose 0,7 € (—m, 7], and o < 7. g([o, 7]) is the ‘hyperbolic arc’ of ‘between t = o and ¢t = 7.
(d) Define the function h : R — IR® by h(t) = (cos(27t),sin(27t),t) for any t € R.
h ‘parametrizes’ the circular helix passing through the point (1,0,0) with gauge 1 on the cylinder 2% + y? = 1.

C

Suppose a,b € R and a < b. g([a,b]) is the ‘section’ of this space curve ‘between t = a and ¢t = b’.

4. Parametrized surfaces.
The idea in the notion of parametrized curves can be generalized to give the notion of parametrized surfaces (and
beyond).
Suppose we are given a ‘nice’ surface S in R™. To ‘describe’ it we may think of the surface S (except perhaps a few
points or a few curves on it) as the image set of some subset D of R? under some function f of two real variables.



Very often D is so nice that it is a plane figure that we know well, for instance, a rectangular region, or a triangular
region, or a disc. f is so nice that it is differentiable everywhere (or even better, smooth), and when it is restricted
to D, it is injective.

In this sense we say we are ‘parametrizing’ the surface S; the ‘parametrization’ under question is the function f.
Equivalently S is the ‘trace’ of the ‘parametrized surface’ f.

The restriction of f to any specific constant value, say, zq, of its ‘first real variable’, defines the parametrized curve
whose ‘formula of definition’ is given by y — f(x,y) whenever (xg,y) € D.

The restriction of f to any specific constant value, say, yg, of its ‘second real variable’, defines the parametrized curve
whose ‘formula of definition’ is given by = —— f(x,yo) whenever (z,yo) € D.

In this way we can visualize the surface S as the unions of two ‘families of parametrized curves’, obtained from
restricting f to various specific values of its ‘first real variable’ and its ‘second real variable’ respectively.

5. Examples of parametrized surfaces.

(a) Let p € R, u,v € R™\{0}. Suppose u,v are linearly independent.
Define the function f : IR? — IR™ by f(s,t) = p + su + tv for any s,t € R.

f(IR?) is the ‘infinite’ plane in R™ passing through p and being parallel to ‘span’ of u,v. The vector u x v is
perpendicular to this plane.
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(b) Define the function g : (—m,7) X (—g, g) — IR3 by

9(0,¢) = (cos(0) cos(p),sin(6) cos(¢), sin(¢))
T
fi 0 e (—m,m), e(——,).
or any (=m,7), @ 53
g ‘parametrizes’ the ‘slitted’ unit sphere 22 + y? + 22 = 1 with centre at origin.
The ‘slit’ is the circular arc from (0,0, —1) to (0,0,1) passing through (—1,0,0).
z z

9([0,7/2] x [0,7/2)) is one quarter of the ‘northern’ hemisphere.



(c) Let r > 0 and R > 0. Suppose R > 7.
Define the function h : (—m,7) x (=7, 7) — IR3 by

h(8, ) = ((R+ rcos(p)) cos(8), (R + rcos(p)) sin(f), rsin(p))

for any 0 € (—m, ), ¢ € (—m,m).
h ‘parametrizes’ the ‘slitted’ torus (\/z2 + y2 — R)? + 22 = r? with centre at origin, ‘floated’ on the zy-plane,
obtained by rotating about the z-axis the circle on the zz-plane with centre at (R, 0,0) and with radius r.

The ‘slits’ are the union of two circles: the circle on the zz-plane with centre at (—R,0,0) and with radius r,
and the circle on the zy-plane with centre at (0,0,0) and with radius R —r.




