
MATH1050 Parametrizations for curves and surfaces

1. In school maths we encountered the notion of locus for a ‘point particle’ ‘moving’ in a plane or in the space. For
instance, consider the passage below:

• A ‘point particle’ is moving in the plane from time a to time b. At any time t, its position in the plane is given
by the coordinates (u(t), v(t)). · · ·

Translated into the the language of function, what this passage is about is the function f : [a, b] −→ R
2 given

f(t) = (u(t), v(t)) for any t ∈ [a, b]. The position of the ‘point particle’ ‘at time t’ is the value of f(t). The locus of
the ‘point particle’ is the image set of [a, b] under f .

So we did actually come across the notion of image set under a function, without knowing its name.

2. Parametrized curves.

Suppose we are given a ‘nice’ curve C in R
n. To ‘describe’ it we may think of the curve C (except perhaps a few

points) as the image set of some subset I of R, under some function f of one real variable. Very often I is so nice
that it is an interval. f is so nice that it is differentiable, (or even better, smooth), and when it is restricted to I, it
is injective.

In this sense we say we are ‘parametrizing’ the curve C; the ‘parametrization’ under question is the function f .
Equivalently C is the ‘trace’ of the ‘parametrized curve’ f . When the points in the set I is interpreted as time, the
curve C is the locus of some ‘point particle’ moving in the plane/space according to some rule specified by the function
f .

3. Examples of parametrized curves.

(a) Let p ∈ R
n, v ∈ R

n\{0}. (Think of p, v as vectors.)

Define the function f : R −→ R
n by f(t) = p+ tv for any t ∈ R.

f(R) is the ‘infinite’ straight line in R
n passing through p and being parallel to v.
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Suppose a, b ∈ R, and a < b. f([a, b]) is the line segment joining the points p+ av, p+ bv.

(b) Let a, b ∈ (0,+∞).

Define the function g : (−π, π) −→ R
2 by g(t) = (a cos(t), b sin(t)) for any t ∈ (−π, π).

g ‘parametrizes’ the ellipse
x2

a2
+

y2

b2
= 1 with the point (−a, 0) removed.

x

y

a

b

−a

−b

0
bbbb

Suppose σ, τ ∈ (−π, π), and σ < τ . g([σ, τ ]) is the ‘elliptic arc’ of ‘between t = σ and t = τ ’.
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(c) Let a, b ∈ (0,+∞).

Define the function g : R −→ R
2 by g(t) = (a cosh(t), b sinh(t)) for any t ∈ R.

g ‘parametrizes’ one branch of the hyperbola
x2
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Suppose σ, τ ∈ (−π, π], and σ < τ . g([σ, τ ]) is the ‘hyperbolic arc’ of ‘between t = σ and t = τ ’.

(d) Define the function h : R −→ R
3 by h(t) = (cos(2πt), sin(2πt), t) for any t ∈ R.

h ‘parametrizes’ the circular helix passing through the point (1, 0, 0) with gauge 1 on the cylinder x2 + y2 = 1.

Suppose a, b ∈ R and a < b. g([a, b]) is the ‘section’ of this space curve ‘between t = a and t = b’.

4. Parametrized surfaces.

The idea in the notion of parametrized curves can be generalized to give the notion of parametrized surfaces (and
beyond).

Suppose we are given a ‘nice’ surface S in R
n. To ‘describe’ it we may think of the surface S (except perhaps a few

points or a few curves on it) as the image set of some subset D of R2 under some function f of two real variables.
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Very often D is so nice that it is a plane figure that we know well, for instance, a rectangular region, or a triangular
region, or a disc. f is so nice that it is differentiable everywhere (or even better, smooth), and when it is restricted
to D, it is injective.

In this sense we say we are ‘parametrizing’ the surface S; the ‘parametrization’ under question is the function f .
Equivalently S is the ‘trace’ of the ‘parametrized surface’ f .

The restriction of f to any specific constant value, say, x0, of its ‘first real variable’, defines the parametrized curve
whose ‘formula of definition’ is given by y 7−→ f(x0, y) whenever (x0, y) ∈ D.

The restriction of f to any specific constant value, say, y0, of its ‘second real variable’, defines the parametrized curve
whose ‘formula of definition’ is given by x 7−→ f(x, y0) whenever (x, y0) ∈ D.

In this way we can visualize the surface S as the unions of two ‘families of parametrized curves’, obtained from
restricting f to various specific values of its ‘first real variable’ and its ‘second real variable’ respectively.

5. Examples of parametrized surfaces.

(a) Let p ∈ R
n, u, v ∈ R

n\{0}. Suppose u, v are linearly independent.

Define the function f : R2 −→ R
n by f(s, t) = p+ su+ tv for any s, t ∈ R.

f(R2) is the ‘infinite’ plane in R
n passing through p and being parallel to ‘span’ of u, v. The vector u × v is

perpendicular to this plane.
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(b) Define the function g : (−π, π)×
(

−
π

2
,
π

2

)

−→ R
3 by

g(θ, ϕ) = (cos(θ) cos(ϕ), sin(θ) cos(ϕ), sin(ϕ))

for any θ ∈ (−π, π), ϕ ∈
(

−
π

2
,
π

2

)

.

g ‘parametrizes’ the ‘slitted’ unit sphere x2 + y2 + z2 = 1 with centre at origin.

The ‘slit’ is the circular arc from (0, 0,−1) to (0, 0, 1) passing through (−1, 0, 0).
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g([0, π/2]× [0, π/2)) is one quarter of the ‘northern’ hemisphere.
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(c) Let r > 0 and R > 0. Suppose R > r.

Define the function h : (−π, π)× (−π, π) −→ R
3 by

h(θ, ϕ) = ((R+ r cos(ϕ)) cos(θ), (R+ r cos(ϕ)) sin(θ), r sin(ϕ))

for any θ ∈ (−π, π), ϕ ∈ (−π, π).

h ‘parametrizes’ the ‘slitted’ torus (
√

x2 + y2 − R)2 + z2 = r2 with centre at origin, ‘floated’ on the xy-plane,
obtained by rotating about the z-axis the circle on the xz-plane with centre at (R, 0, 0) and with radius r.

The ‘slits’ are the union of two circles: the circle on the xz-plane with centre at (−R, 0, 0) and with radius r,
and the circle on the xy-plane with centre at (0, 0, 0) and with radius R− r.
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