MATH1050 Parametrizations for curves and surfaces

- 1. In school maths we encountered the notion of locus for a 'point particle' 'moving' in a plane or in the space. For instance, consider the passage below:
	- \bullet A 'point particle' is moving in the plane from time a to time b. At any time t, its position in the plane is given by the coordinates $(u(t), v(t))$. \cdots

Translated into the the language of function, what this passage is about is the function $f : [a, b] \longrightarrow \mathbb{R}^2$ given $f(t) = (u(t), v(t))$ for any $t \in [a, b]$. The position of the 'point particle' 'at time t' is the value of $f(t)$. The locus of the 'point particle' is the image set of $[a, b]$ under f.

So we did actually come across the notion of image set under a function, without knowing its name.

2. Parametrized curves.

Suppose we are given a 'nice' curve C in \mathbb{R}^n . To 'describe' it we may think of the curve C (except perhaps a few points) as the image set of some subset I of \mathbb{R} , under some function f of one real variable. Very often I is so nice that it is an interval. f is so nice that it is differentiable, (or even better, smooth), and when it is restricted to I , it is injective.

In this sense we say we are 'parametrizing' the curve C ; the 'parametrization' under question is the function f . Equivalently C is the 'trace' of the 'parametrized curve' f . When the points in the set I is interpreted as time, the curve C is the locus of some 'point particle' moving in the plane/space according to some rule specified by the function f.

3. Examples of parametrized curves.

(a) Let $p \in \mathbb{R}^n$, $v \in \mathbb{R}^n \setminus \{0\}$. (Think of p, v as vectors.)

Define the function $f : \mathbb{R} \longrightarrow \mathbb{R}^n$ by $f(t) = p + tv$ for any $t \in \mathbb{R}$.

 $f(\mathbb{R})$ is the **'infinite' straight line** in \mathbb{R}^n passing through p and being parallel to v.

Suppose $a, b \in \mathbb{R}$, and $a < b$. $f([a, b])$ is the line segment joining the points $p + av$, $p + bv$. (b) Let $a, b \in (0, +\infty)$.

Define the function $g: (-\pi, \pi) \longrightarrow \mathbb{R}^2$ by $g(t) = (a \cos(t), b \sin(t))$ for any $t \in (-\pi, \pi)$. g 'parametrizes' the **ellipse** $\frac{x^2}{2}$ $rac{x^2}{a^2} + \frac{y^2}{b^2}$ $\frac{\partial^2}{\partial^2} = 1$ with the point $(-a, 0)$ removed.

Suppose $\sigma, \tau \in (-\pi, \pi)$, and $\sigma < \tau$. $g([\sigma, \tau])$ is the 'elliptic arc' of 'between $t = \sigma$ and $t = \tau'$.

(c) Let $a, b \in (0, +\infty)$.

Define the function $g : \mathbb{R} \longrightarrow \mathbb{R}^2$ by $g(t) = (a \cosh(t), b \sinh(t))$ for any $t \in \mathbb{R}$. g 'parametrizes' one branch of the **hyperbola** $\frac{x^2}{2}$ $rac{x^2}{a^2} - \frac{y^2}{b^2}$

Suppose $\sigma, \tau \in (-\pi, \pi]$, and $\sigma < \tau$. $g([\sigma, \tau])$ is the 'hyperbolic arc' of 'between $t = \sigma$ and $t = \tau'$. (d) Define the function $h : \mathbb{R} \longrightarrow \mathbb{R}^3$ by $h(t) = (\cos(2\pi t), \sin(2\pi t), t)$ for any $t \in \mathbb{R}$.

h 'parametrizes' the **circular helix** passing through the point $(1, 0, 0)$ with gauge 1 on the cylinder $x^2 + y^2 = 1$.

Suppose $a, b \in \mathbb{R}$ and $a < b$. $g([a, b])$ is the 'section' of this space curve 'between $t = a$ and $t = b'$.

4. Parametrized surfaces.

The idea in the notion of parametrized curves can be generalized to give the notion of parametrized surfaces (and beyond).

Suppose we are given a 'nice' surface S in \mathbb{R}^n . To 'describe' it we may think of the surface S (except perhaps a few points or a few curves on it) as the image set of some subset D of \mathbb{R}^2 under some function f of two real variables. Very often D is so nice that it is a plane figure that we know well, for instance, a rectangular region, or a triangular region, or a disc. f is so nice that it is differentiable everywhere (or even better, smooth), and when it is restricted to D , it is injective.

In this sense we say we are 'parametrizing' the surface S ; the 'parametrization' under question is the function f . Equivalently S is the 'trace' of the 'parametrized surface' f .

The restriction of f to any specific constant value, say, x_0 , of its 'first real variable', defines the parametrized curve whose 'formula of definition' is given by $y \longmapsto f(x_0, y)$ whenever $(x_0, y) \in D$.

The restriction of f to any specific constant value, say, y_0 , of its 'second real variable', defines the parametrized curve whose 'formula of definition' is given by $x \mapsto f(x, y_0)$ whenever $(x, y_0) \in D$.

In this way we can visualize the surface S as the unions of two 'families of parametrized curves', obtained from restricting f to various specific values of its 'first real variable' and its 'second real variable' respectively.

5. Examples of parametrized surfaces.

(a) Let $p \in \mathbb{R}^n$, $u, v \in \mathbb{R}^n \setminus \{0\}$. Suppose u, v are linearly independent.

Define the function $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^n$ by $f(s,t) = p + su + tv$ for any $s, t \in \mathbb{R}$.

 $f(\mathbb{R}^2)$ is the **'infinite' plane** in \mathbb{R}^n passing through p and being parallel to 'span' of u, v . The vector $u \times v$ is perpendicular to this plane.

(b) Define the function $g: (-\pi, \pi) \times \left(-\frac{\pi}{2}\right)$ $\frac{\pi}{2}, \frac{\pi}{2}$ 2 $\Big)$ → \mathbb{R}^3 by

 $g(\theta, \varphi) = (\cos(\theta) \cos(\varphi), \sin(\theta) \cos(\varphi), \sin(\varphi))$

for any $\theta \in (-\pi, \pi)$, $\varphi \in \left(-\frac{\pi}{2}\right)$ $\frac{\pi}{2}, \frac{\pi}{2}$ 2 .

g 'parametrizes' the 'slitted' unit **sphere** $x^2 + y^2 + z^2 = 1$ with centre at origin. The 'slit' is the circular arc from $(0, 0, -1)$ to $(0, 0, 1)$ passing through $(-1, 0, 0)$.

 $g([0, \pi/2] \times [0, \pi/2])$ is one quarter of the 'northern' hemisphere.

(c) Let $r > 0$ and $R > 0$. Suppose $R > r$.

Define the function $h: (-\pi, \pi) \times (-\pi, \pi) \longrightarrow \mathbb{R}^3$ by

$$
h(\theta, \varphi) = ((R + r \cos(\varphi)) \cos(\theta), (R + r \cos(\varphi)) \sin(\theta), r \sin(\varphi))
$$

for any $\theta \in (-\pi, \pi)$, $\varphi \in (-\pi, \pi)$.

h 'parametrizes' the 'slitted' **torus** $(\sqrt{x^2 + y^2} - R)^2 + z^2 = r^2$ with centre at origin, 'floated' on the xy-plane, obtained by rotating about the z-axis the circle on the xz-plane with centre at $(R, 0, 0)$ and with radius r. The 'slits' are the union of two circles: the circle on the xz-plane with centre at $(-R, 0, 0)$ and with radius r, and the circle on the xy-plane with centre at $(0, 0, 0)$ and with radius $R - r$.

