1. **Definition.**

Let S be a subset of R*. The set S is said to be an* **interval in** R *if any one of the statements below hold:*

Remark on notations and terminologies. We write:

• (*a,* +*∞*) = *{x ∈* R : *a < x}* • $[a, +\infty) = \{x \in \mathbb{R} : a \leq x\}$ • (*−∞, b*) = *{x ∈* R : *x < b}* • (*−∞, b*] = *{x ∈* R : *x ≤ b}* • $(a, b) = \{x \in \mathbb{R} : a < x < b\}$ • $[a, b) = \{x \in \mathbb{R} : a \leq x < b\}$ • $(a, b] = \{x \in \mathbb{R} : a < x \leq b\}$ • $[a, b] = \{x \in \mathbb{R} : a \leq x \leq b\}$

Each of the numbers *a, b* is called an endpoint of the interval concerned. If the interval concerned contains all its endponts as its elements, it is said to be a **closed interval**. Where it contains none, it is said to be an **open interval**. If the interval is bounded in R, it is said to be a **bounded interval**. If it is not bounded in R, it is said to be an **unbounded interval**.

2. **Theorem (1). (Characterization of intervals.)**

Let S be a subset of R*. The statements* (I1)*,* (I2) *below are equivalent:*

- (I1) *S is an interval.*
- (I2) *For any* $x, y \in S$ *, for any* $u \in \mathbb{R}$ *, if* $x \le u \le y$ *then* $u \in S$ *.*

3. **Outline of a proof of Theorem (1).**

The argument for $'(I1) \implies (I2)'$ is tedious but straightforward. Below is an outline of the argument for $'(I2) \implies (I1)'$:

- (a) Let *S* be a subset of R. Suppose *S* satisfies (I2).
	- If $S = \emptyset$ then *S* is an interval.

From now on, suppose $S \neq \emptyset$.

- (b) Suppose *S* is neither bounded above in R nor bounded below in R. Then, by applying (I2), we deduce $\mathbb{R} \subset S$. It follows that $S = \mathbb{R}$.
- (c) Suppose *S* is bounded above in R, and *S* is not bounded below in R.
	- i. Take some $c \in S$. By applying (I2), we deduce that $(-\infty, c] \subset S$.
	- ii. Since *S* is non-empty and is bounded above in R, *S* has a supremum in R, which we denote by *b*.
	- iii. Since *b* is an upper bound of *S* in \mathbb{R} , we have $S \subset (-\infty, b]$.
	- iv. By applying (I2), we deduce that (c, b) ⊂ *S*. (Why? Pick any $u \in (c, b)$. Since $k < b$, *u* is not an upper bound of *S* in R. Then there exists some $v \in S$ such that $v > u$. Since $v \in S$, we have $v \leq b$. Then *c* < *k* < *v*. By (I2), *k* ∈ *S*.)
	- *v*. It follows that $(-\infty, b) \subset S \subset (-\infty, b]$. Then $S = (-\infty, b)$ or $(-\infty, b]$.
- (d) Suppose *S* is bounded below in R, and *S* is not bounded above in R. Modifying the argument above, we deduce that *S* has an infimum in R, which we denote by *a*, and that furthermore, $(a, +\infty) \subset S \subset [a, +\infty)$. Then $S = (a, +\infty)$ or $[a, +\infty)$.
- (e) Suppose *S* is bounded below in R and bounded above in R. Modifying the argument above, we deduce that *S* has an infimum and a supremum in R, we denote by *a, b* respectively, and that furthermore, $(a, b) \subset S \subset [a, b]$. Then $S = (a, b)$ or $S = (a, b]$ or $S = [a, b)$ or $S = [a, b]$.
- 4. **Theorem (2).**

Let J be an interval in \mathbb{R} *, and* $q: J \longrightarrow \mathbb{R}$ *be a function.*

Suppose q is continuous on J. Then $q(J)$ *is an interval.*

Remark. The proof of Theorem (2) relies on Theorem (1) and the Intermediate Value Theorem.

5. **Intermediate Value Theorem.**

Let $a, b \in \mathbb{R}$, with $a < b$. Let $h : [a, b] \longrightarrow \mathbb{R}$ be a function. Suppose $h(a) \neq h(b)$. Suppose h is continuous on [a, b]. Then, for any $\gamma \in \mathbb{R}$, if γ is strictly between $h(a)$ and $h(b)$ then there exists some $c \in (a, b)$ such that $h(c) = \gamma$.

6. **Proof of Theorem (2).**

Let *J* be an interval in \mathbb{R} , and $q: J \longrightarrow \mathbb{R}$ be a function.

Suppose *g* is continuous on *J*.

[We want to verify that for any $s, t \in g(J)$, for any $u \in \mathbb{R}$, if $s \le u \le t$ then $u \in g(J)$.]

Pick any $s, t \in q(J)$. Pick any $u \in \mathbb{R}$. Suppose $s \leq u \leq t$.

If $s = t$ or $u = s$ or $u = t$, then $u \in g(J)$ trivially. From now on suppose $s < u < t$.

By the definition of $q(J)$, there exists some $a, b \in J$ such that $s = q(a)$ and $t = q(b)$. Since $s < t$, we have $a \neq b$.

By assumption *q* is continuous on *J*. Since *J* is an interval and $a, b \in J$, the closed and bounded interval *I* with endpoints *a, b* lies entirely in *J*. Then *g* is continuous on *I*.

By the Intermediate Value Theorem, there exists some *c* strictly between *a*, *b* such that $u = q(c)$. Then $u \in q(J)$. Now by Theorem (1) , $q(J)$ is an interval.

7. **Theorem (3).**

Let K be a closed and bounded interval in \mathbb{R} *, and* $g: K \longrightarrow \mathbb{R}$ *be a function.*

Suppose g is continuous on *K*. Then $g(K)$ is a closed and bounded interval. Moreover, the endpoints of $g(K)$ are *respectively the least element and the greatest element of* $g(K)$ *.*

Remark. The proof of Theorem (3) relies on Theorem (2), the Intermediate Value Theorem and the Existence-of-Extremum Theorem for continuous functions.

Further remark. The statements below are false:

- (a) Let *J* be an open interval in \mathbb{R} , and $q: J \longrightarrow \mathbb{R}$ be a function. *Suppose g is continuous on J.* Then $g(J)$ *is an open interval.*
- (b) Let *J* be a closed interval in \mathbb{R} , and $q: J \longrightarrow \mathbb{R}$ be a function. *Suppose g is continuous on J. Then g*(*J*) *is a closed interval.*
- (c) Let *J* be a bounded interval in \mathbb{R} , and $q: J \longrightarrow \mathbb{R}$ be a function. *Suppose g is continuous on J.* Then $g(J)$ *is a bounded interval.*
- (d) Let *J* be an unbounded interval in \mathbb{R} , and $q: J \longrightarrow \mathbb{R}$ be a function. *Suppose g is continuous on J. Then g*(*J*) *is an unbounded interval.*

8. **Definition. (Absolute extrema for real-valued functions of one real variable.)**

Let I be an interval, and $h: D \longrightarrow \mathbb{R}$ be a real-valued function of one real variable with domain *D* which contains *I as a subset entirely. Let p be a point in I.*

- (a) h is said to **attain absolute maximum at** p **on** I if for any $x \in I$, the inequality $h(x) \leq h(p)$ holds. The *number* $h(p)$ *is called the* **absolute maximum value of** h **on** I *.*
- (b) h is said to **attain absolute minimum at** p **on** I if for any $x \in I$, the inequality $h(x) \geq h(p)$ holds. The *number* $h(p)$ *is called the* **absolute minimum value of** h **on** I *.*
- (c) *h is said to* **attain (absolute) extremum at** *p* **on** *I if h attains absolute maximum at p or h attains absolute minimum at p.*

Existence-of-Extremum Theorem for continuous functions.

Let I be a closed and bounded interval in \mathbb{R} *, and* $f: I \longrightarrow \mathbb{R}$ *be a function.*

Suppose f is continuous on I. Then there exist some $p, q \in I$ such that f attains absolute minimum at p on I and f *attains absolute maximum at q on I.*

Remark. The key step in the proof of the Existence-of-Extremum Theorem for continuous functions is to prove that the function *f* is bounded, in the sense that there exist some positive real number *C* such that for any $x \in I$, $|f(x)| \leq C$. The technical detail for this step is beyond the scope of this course: it relies on ideas that will be introduced in your *analysis* course.

9. **Proof of Theorem (3).**

Let *K* be a closed and bounded interval in \mathbb{R} , and $q: K \longrightarrow \mathbb{R}$ be a function.

Suppose *g* is continuous on *K*.

By Theorem (2) , $g(K)$ is an interval.

By the Existence-of-Extremum Theorem for continuous functions, there exist some $p, q \in K$ such that *g* attains absolute minimum at *p* on *K* and *g* attains absolute maximum at *q* on *K*.

We verify that $g(K) = [g(p), g(q)]$:

- Pick any $y \in [g(p), g(q)]$. Then $g(p) \leq y \leq g(q)$. If $y = g(p)$ or $y = g(q)$ then $y \in g(K)$. From now on suppose $q(p) < y < q(q)$. Then by the Intermediate Value Theorem, there exists some *x* strictly between *p* and *q* such that $y = g(x)$. Since *K* is an interval, $p, q \in K$ and *x* is strictly between p, q , we have $x \in K$. Then $y \in g(K)$.
- Suppose $v \in q(K)$. Then there exists some $u \in K$ such that $v = q(u)$. Since *g* attains absolute minimum at *p* on *K*, we have $v = g(u) \ge g(p)$ Since *g* attains absolute maximum at *q* on *K*, we have $v = g(u) \leq g(q)$. Then $g(p) \le v \le g(q)$. Therefore $v \in [g(p), g(q)]$.

Hence $g(K)$ is the closed and bounded interval $[g(p), g(q)]$, whose least element and greatest element are respectively $g(p), g(q)$.

10. **Definition.**

Let S be a subset of R*.*

- (a) *S* is said to be **open in** R if for any $x \in S$, there exists some $\delta > 0$ such that $(x \delta, x + \delta) \subset S$.
- (b) *S* is said to be **closed in** \mathbb{R} if $\mathbb{R}\setminus S$ is open in \mathbb{R} .

Remark.

- (a) *∅* is open in R and is closed in R.
- (b) R is open in R and is closed in R.
- (c) Every open interval in R is open in R.
- (d) Every closed interval in R is closed in R.

11. **Definition.**

Let A be a subset of R*, and S be a subset of A.*

(a) S is said to be **open in** A if for any $x \in S$, there exists some $\delta > 0$ such that $(x - \delta, x + \delta) \cap A \subset S$.

(b) *S* is said to be **closed in** *A* if $A \setminus S$ is open in *A*.

Lemma (4).

Let A be a subset of R*, and S be a subset of A. The statements below are logically equivalent:*

- (a) *S is open in A.*
- (b) *There exists some subset* T *of* \mathbb{R} *such that* T *is open in* \mathbb{R} *and* $S = T \cap A$ *.*

Remark. The proof of Lemma (4) is easy.

12. **Theorem (5).**

Let D be a subset of \mathbb{R} *, and* $f: D \longrightarrow \mathbb{R}$ *be a function.*

The statements below are logically equivalent:

- (a) *f is continuous on D.*
- (b) For any subset *U* of \mathbb{R} , if *U* is open in \mathbb{R} then $f^{-1}(U)$ is open in *D*.
- (c) For any subset *J* of \mathbb{R} , if *J* is an open interval in \mathbb{R} then $f^{-1}(J)$ is open in *D*.

Remark. Theorem (5) is a straightforward consequence of the definition of pre-image set, the definition of open set in R, and the (formal) definition for the notion of continuity.

Definition.

Let A be a subset of \mathbb{R} *, and* $h : A \longrightarrow \mathbb{R}$ *be a function. Let* $c \in A$ *.*

h is said to be **continuous at** *c if the statement* (CT) *holds:*

(CT) For any $\varepsilon > 0$, there exists some $\delta > 0$ such that for any $x \in A$, if $|x - c| < \delta$ then $|h(x) - h(c)| < \varepsilon$.

Furthermore, h is said to be **continuous on** *D if h is continuous at every point of D.*

13. **Proof of Theorem (5).**

Let D be a subset of \mathbb{R} *, and* $f: D \longrightarrow \mathbb{R}$ *be a function.*

• [(a)=*⇒*(b)?]

Suppose *f* is continuous on *D*.

[We want to prove that for any subset *U* of \mathbb{R} , if *U* is open in \mathbb{R} then $f^{-1}(U)$ is open in *D*.]

Let *U* be a subset of R. Suppose *U* is open in R.

[We want to verify that $f^{-1}(U)$ is open in \mathbb{R} .]

Pick any $c \in f^{-1}(U)$. By the definition of pre-image set, we have $f(c) \in U$.

Since *U* is open in R, there exists some $\eta > 0$ such that $(f(c) - \eta, f(c) + \eta) \subset U$.

By continuity, for the same $\eta > 0$, there exists some $\delta > 0$ such that for any $x \in D$, if $|x - c| < \delta$ then *|f*(*x*) *− f*(*c*)*| < η*.

We verify that $(c - \delta, c + \delta) \cap D \subset f^{-1}(U)$:

Pick any $x \in (c - \delta, c + \delta) \cap D$. We have $x \in D$ and $|x - c| < \delta$. Then (by continuity,) $|f(x) - f(c)| < \eta$. Therefore $f(x) \in (f(c) - \eta, f(c) + \eta)$. Hence $f(x) \in U$.

By the definition of pre-image set, we have $x \in f^{-1}(U)$.

It follows that $f^{-1}(U)$ is open in \mathbb{R} .

• [(b)=*⇒*(c)?]

Suppose that for any subset *U* of \mathbb{R} , if *U* is open in \mathbb{R} then $f^{-1}(U)$ is open in *D*.

[We want to prove that for any subset *J* of \mathbb{R} , if *J* is an open interval in \mathbb{R} then $f^{-1}(J)$ is open in *D*.]

Let *J* be a subset of \mathbb{R} . Suppose *J* is an open interval in \mathbb{R} .

Note that *J* is open in \mathbb{R} . Then, by assumption, $f^{-1}(J)$ is open in *D*.

• [(c)=*⇒*(a)?]

Suppose that for any subset *J* of \mathbb{R} , if *J* is an open interval in \mathbb{R} then $f^{-1}(J)$ is open in *D*.

[We want to prove that *f* is continuous on *D*. This amounts to verify that for any $c \in D$, for any $\varepsilon > 0$, there exists some $\delta > 0$ such that for any $x \in D$, if $|x - c| < \delta$ then $|f(x) - f(c)| < \varepsilon$.]

Pick any $c \in D$. Pick any $\varepsilon > 0$. Write $J = (f(c) - \varepsilon, f(c) + \varepsilon)$. Note that *J* is an open interval in R. By assumption, $f^{-1}(J)$ is open in *D*.

Since $f(c) \in J$, we have $c \in J$ by the definition of pre-image set.

Then, by the definition of open set, there exists some $\delta > 0$ such that $(c - \delta, c + \delta) \cap D \in f^{-1}(J)$.

[We now ask: Is it true that for any $x \in D$, if $|x - c| < \delta$ then $|f(x) - f(c)| < \varepsilon$?]

Pick any $x \in D$. Suppose $|x-c| < \delta$. Then $x \in (c-\delta, c+\delta)$ and $x \in D$. Therefore $x \in (c-\delta, c+\delta) \cap D$. Hence $x \in f^{-1}(J)$.

Now by the definition of pre-image set, we have $f(x) \in J$. Then $|f(x) - f(c)| < \varepsilon$.

It follows that *f* is continuous at *c*.