1. Definition.

Let S be a subset of \mathbb{R} . The set S is said to be an interval in \mathbb{R} if any one of the statements below hold:

(a) $S = \emptyset$.	(f) $S = \{x \in \mathbb{R} : a < x < b\}$ for some $a, b \in \mathbb{R}$.
(b) $S = \{x \in \mathbb{R} : a < x\}$ for some $a \in \mathbb{R}$.	(g) $S = \{x \in \mathbb{R} : a \le x < b\}$ for some $a, b \in \mathbb{R}$.
(c) $S = \{x \in \mathbb{R} : a \leq x\}$ for some $a \in \mathbb{R}$.	(h) $S = \{x \in \mathbb{R} : a < x \le b\}$ for some $a, b \in \mathbb{R}$.
(d) $S = \{x \in \mathbb{R} : x < b\}$ for some $b \in \mathbb{R}$.	(i) $S = \{x \in \mathbb{R} : a \le x \le b\}$ for some $a, b \in \mathbb{R}$.
(e) $S = \{x \in \mathbb{R} : x \leq b\}$ for some $b \in \mathbb{R}$.	(j) $S = \mathbb{R}$.

Remark on notations and terminologies. We write:

Each of the numbers a, b is called an endpoint of the interval concerned. If the interval concerned contains all its endpoints as its elements, it is said to be a **closed interval**. Where it contains none, it is said to be an **open interval**. If the interval is bounded in \mathbb{R} , it is said to be a **bounded interval**. If it is not bounded in \mathbb{R} , it is said to be an **unbounded interval**.

2. Theorem (1). (Characterization of intervals.)

Let S be a subset of \mathbb{R} . The statements (I1), (I2) below are equivalent:

- (I1) S is an interval.
- (I2) For any $x, y \in S$, for any $u \in \mathbb{R}$, if $x \le u \le y$ then $u \in S$.

3. Outline of a proof of Theorem (1).

The argument for $(I1) \Longrightarrow (I2)'$ is tedious but straightforward. Below is an outline of the argument for $(I2) \Longrightarrow (I1)'$:

(a) Let S be a subset of \mathbb{R} . Suppose S satisfies (I2). If $S = \emptyset$ then S is an interval.

From now on, suppose $S \neq \emptyset$.

- (b) Suppose S is neither bounded above in \mathbb{R} nor bounded below in \mathbb{R} . Then, by applying (I2), we deduce $\mathbb{R} \subset S$. It follows that $S = \mathbb{R}$.
- (c) Suppose S is bounded above in \mathbb{R} , and S is not bounded below in \mathbb{R} .
 - i. Take some $c \in S$. By applying (I2), we deduce that $(-\infty, c] \subset S$.
 - ii. Since S is non-empty and is bounded above in \mathbb{R} , S has a supremum in \mathbb{R} , which we denote by b.
 - iii. Since b is an upper bound of S in \mathbb{R} , we have $S \subset (-\infty, b]$.
 - iv. By applying (I2), we deduce that $(c, b) \subset S$. (Why? Pick any $u \in (c, b)$. Since k < b, u is not an upper bound of S in \mathbb{R} . Then there exists some $v \in S$ such that v > u. Since $v \in S$, we have $v \leq b$. Then c < k < v. By (I2), $k \in S$.)
 - v. It follows that $(-\infty, b) \subset S \subset (-\infty, b]$. Then $S = (-\infty, b)$ or $(-\infty, b]$.
- (d) Suppose S is bounded below in ℝ, and S is not bounded above in ℝ. Modifying the argument above, we deduce that S has an infimum in ℝ, which we denote by a, and that furthermore, (a, +∞) ⊂ S ⊂ [a, +∞). Then S = (a, +∞) or [a, +∞).
- (e) Suppose S is bounded below in ℝ and bounded above in ℝ.
 Modifying the argument above, we deduce that S has an infimum and a supremum in ℝ, we denote by a, b respectively, and that furthermore, (a, b) ⊂ S ⊂ [a, b].
 Then S = (a, b) or S = (a, b] or S = [a, b) or S = [a, b].
- 4. Theorem (2).

Let J be an interval in \mathbb{R} , and $g: J \longrightarrow \mathbb{R}$ be a function.

Suppose g is continuous on J. Then g(J) is an interval.

Remark. The proof of Theorem (2) relies on Theorem (1) and the Intermediate Value Theorem.

5. Intermediate Value Theorem.

Let $a, b \in \mathbb{R}$, with a < b. Let $h : [a, b] \longrightarrow \mathbb{R}$ be a function. Suppose $h(a) \neq h(b)$. Suppose h is continuous on [a, b]. Then, for any $\gamma \in \mathbb{R}$, if γ is strictly between h(a) and h(b) then there exists some $c \in (a, b)$ such that $h(c) = \gamma$.

6. Proof of Theorem (2).

Let J be an interval in $\mathbb{R},$ and $g:J\longrightarrow\mathbb{R}$ be a function.

Suppose g is continuous on J.

[We want to verify that for any $s, t \in g(J)$, for any $u \in \mathbb{R}$, if $s \leq u \leq t$ then $u \in g(J)$.]

Pick any $s, t \in g(J)$. Pick any $u \in \mathbb{R}$. Suppose $s \leq u \leq t$.

If s = t or u = s or u = t, then $u \in g(J)$ trivially. From now on suppose s < u < t.

By the definition of g(J), there exists some $a, b \in J$ such that s = g(a) and t = g(b). Since s < t, we have $a \neq b$. By assumption g is continuous on J. Since J is an interval and $a, b \in J$, the closed and bounded interval I with endpoints a, b lies entirely in J. Then g is continuous on I.

By the Intermediate Value Theorem, there exists some c strictly between a, b such that u = g(c). Then $u \in g(J)$. Now by Theorem (1), g(J) is an interval.

7. Theorem (3).

Let K be a closed and bounded interval in \mathbb{R} , and $g: K \longrightarrow \mathbb{R}$ be a function.

Suppose g is continuous on K. Then g(K) is a closed and bounded interval. Moreover, the endpoints of g(K) are respectively the least element and the greatest element of g(K).

Remark. The proof of Theorem (3) relies on Theorem (2), the Intermediate Value Theorem and the Existence-of-Extremum Theorem for continuous functions.

Further remark. The statements below are false:

- (a) Let J be an open interval in \mathbb{R} , and $g: J \longrightarrow \mathbb{R}$ be a function. Suppose g is continuous on J. Then g(J) is an open interval.
- (b) Let J be a closed interval in \mathbb{R} , and $g: J \longrightarrow \mathbb{R}$ be a function. Suppose g is continuous on J. Then g(J) is a closed interval.
- (c) Let J be a bounded interval in \mathbb{R} , and $g: J \longrightarrow \mathbb{R}$ be a function. Suppose g is continuous on J. Then g(J) is a bounded interval.
- (d) Let J be an unbounded interval in \mathbb{R} , and $g: J \longrightarrow \mathbb{R}$ be a function. Suppose g is continuous on J. Then g(J) is an unbounded interval.

8. Definition. (Absolute extrema for real-valued functions of one real variable.)

Let I be an interval, and $h: D \longrightarrow \mathbb{R}$ be a real-valued function of one real variable with domain D which contains I as a subset entirely. Let p be a point in I.

- (a) h is said to attain absolute maximum at p on I if for any $x \in I$, the inequality $h(x) \leq h(p)$ holds. The number h(p) is called the absolute maximum value of h on I.
- (b) h is said to attain absolute minimum at p on I if for any $x \in I$, the inequality $h(x) \ge h(p)$ holds. The number h(p) is called the absolute minimum value of h on I.
- (c) h is said to attain (absolute) extremum at p on I if h attains absolute maximum at p or h attains absolute minimum at p.

Existence-of-Extremum Theorem for continuous functions.

Let I be a closed and bounded interval in \mathbb{R} , and $f: I \longrightarrow \mathbb{R}$ be a function.

Suppose f is continuous on I. Then there exist some $p, q \in I$ such that f attains absolute minimum at p on I and f attains absolute maximum at q on I.

Remark. The key step in the proof of the Existence-of-Extremum Theorem for continuous functions is to prove that the function f is bounded, in the sense that there exist some positive real number C such that for any $x \in I$, $|f(x)| \leq C$. The technical detail for this step is beyond the scope of this course: it relies on ideas that will be introduced in your *analysis* course.

9. Proof of Theorem (3).

Let K be a closed and bounded interval in $\mathbb{R},$ and $g:K\longrightarrow\mathbb{R}$ be a function.

Suppose g is continuous on K.

By Theorem (2), g(K) is an interval.

By the Existence-of-Extremum Theorem for continuous functions, there exist some $p, q \in K$ such that g attains absolute minimum at p on K and g attains absolute maximum at q on K.

We verify that g(K) = [g(p), g(q)]:

- Pick any y ∈ [g(p), g(q)]. Then g(p) ≤ y ≤ g(q). If y = g(p) or y = g(q) then y ∈ g(K).
 From now on suppose g(p) < y < g(q). Then by the Intermediate Value Theorem, there exists some x strictly between p and q such that y = g(x).
 Since K is an interval, p,q ∈ K and x is strictly between p,q, we have x ∈ K.
 Then y ∈ g(K).
- Suppose $v \in g(K)$. Then there exists some $u \in K$ such that v = g(u). Since g attains absolute minimum at p on K, we have $v = g(u) \ge g(p)$ Since g attains absolute maximum at q on K, we have $v = g(u) \le g(q)$. Then $g(p) \le v \le g(q)$. Therefore $v \in [g(p), g(q)]$.

Hence g(K) is the closed and bounded interval [g(p), g(q)], whose least element and greatest element are respectively g(p), g(q).

10. **Definition.**

Let S be a subset of \mathbb{R} .

- (a) S is said to be open in \mathbb{R} if for any $x \in S$, there exists some $\delta > 0$ such that $(x \delta, x + \delta) \subset S$.
- (b) S is said to be closed in \mathbb{R} if $\mathbb{R}\setminus S$ is open in \mathbb{R} .

Remark.

- (a) \emptyset is open in \mathbb{R} and is closed in \mathbb{R} .
- (b) \mathbb{R} is open in \mathbb{R} and is closed in \mathbb{R} .
- (c) Every open interval in $\mathbb R$ is open in $\mathbb R.$
- (d) Every closed interval in \mathbb{R} is closed in \mathbb{R} .

11. Definition.

Let A be a subset of \mathbb{R} , and S be a subset of A.

(a) S is said to be open in A if for any $x \in S$, there exists some $\delta > 0$ such that $(x - \delta, x + \delta) \cap A \subset S$.

(b) S is said to be closed in A if $A \setminus S$ is open in A.

Lemma (4).

Let A be a subset of \mathbb{R} , and S be a subset of A. The statements below are logically equivalent:

- (a) S is open in A.
- (b) There exists some subset T of \mathbb{R} such that T is open in \mathbb{R} and $S = T \cap A$.

Remark. The proof of Lemma (4) is easy.

12. Theorem (5).

Let D be a subset of \mathbb{R} , and $f : D \longrightarrow \mathbb{R}$ be a function. The statements below are logically equivalent:

The statements below are logicarly equivar

- (a) f is continuous on D.
- (b) For any subset U of \mathbb{R} , if U is open in \mathbb{R} then $f^{-1}(U)$ is open in D.
- (c) For any subset J of \mathbb{R} , if J is an open interval in \mathbb{R} then $f^{-1}(J)$ is open in D.

Theorem (5) is a straightforward consequence of the definition of pre-image set, the definition of open Remark. set in \mathbb{R} , and the (formal) definition for the notion of continuity.

Definition.

Let A be a subset of \mathbb{R} , and $h: A \longrightarrow \mathbb{R}$ be a function. Let $c \in A$.

h is said to be **continuous at** c if the statement (CT) holds:

(CT) For any $\varepsilon > 0$, there exists some $\delta > 0$ such that for any $x \in A$, if $|x - c| < \delta$ then $|h(x) - h(c)| < \varepsilon$.

Furthermore, h is said to be **continuous on** D if h is continuous at every point of D.

13. Proof of Theorem (5).

Let D be a subset of \mathbb{R} , and $f: D \longrightarrow \mathbb{R}$ be a function.

• $[(a) \Longrightarrow (b)?]$

Suppose f is continuous on D.

We want to prove that for any subset U of \mathbb{R} , if U is open in \mathbb{R} then $f^{-1}(U)$ is open in D.

Let U be a subset of \mathbb{R} . Suppose U is open in \mathbb{R} .

[We want to verify that $f^{-1}(U)$ is open in \mathbb{R} .]

Pick any $c \in f^{-1}(U)$. By the definition of pre-image set, we have $f(c) \in U$.

Since U is open in \mathbb{R} , there exists some $\eta > 0$ such that $(f(c) - \eta, f(c) + \eta) \subset U$.

By continuity, for the same $\eta > 0$, there exists some $\delta > 0$ such that for any $x \in D$, if $|x - c| < \delta$ then $|f(x) - f(c)| < \eta.$

We verify that $(c - \delta, c + \delta) \cap D \subset f^{-1}(U)$:

Pick any $x \in (c - \delta, c + \delta) \cap D$. We have $x \in D$ and $|x - c| < \delta$. Then (by continuity,) $|f(x) - f(c)| < \eta$. Therefore $f(x) \in (f(c) - \eta, f(c) + \eta)$. Hence $f(x) \in U$. By the definition of pre-image set, we have $x \in f^{-1}(U)$.

It follows that $f^{-1}(U)$ is open in \mathbb{R} .

• $[(b) \Longrightarrow (c)?]$

Suppose that for any subset U of \mathbb{R} , if U is open in \mathbb{R} then $f^{-1}(U)$ is open in D.

We want to prove that for any subset J of \mathbb{R} , if J is an open interval in \mathbb{R} then $f^{-1}(J)$ is open in D.]

Let J be a subset of \mathbb{R} . Suppose J is an open interval in \mathbb{R} .

Note that J is open in \mathbb{R} . Then, by assumption, $f^{-1}(J)$ is open in D.

• $[(c) \Longrightarrow (a)?]$

Suppose that for any subset J of \mathbb{R} , if J is an open interval in \mathbb{R} then $f^{-1}(J)$ is open in D.

We want to prove that f is continuous on D. This amounts to verify that for any $\varepsilon \in D$, for any $\varepsilon > 0$, there exists some $\delta > 0$ such that for any $x \in D$, if $|x - c| < \delta$ then $|f(x) - f(c)| < \varepsilon$.

Pick any $c \in D$. Pick any $\varepsilon > 0$. Write $J = (f(c) - \varepsilon, f(c) + \varepsilon)$. Note that J is an open interval in \mathbb{R} . By assumption, $f^{-1}(J)$ is open in D.

Since $f(c) \in J$, we have $c \in J$ by the definition of pre-image set.

Then, by the definition of open set, there exists some $\delta > 0$ such that $(c - \delta, c + \delta) \cap D \in f^{-1}(J)$.

[We now ask: Is it true that for any $x \in D$, if $|x - c| < \delta$ then $|f(x) - f(c)| < \varepsilon$?]

Pick any $x \in D$. Suppose $|x-c| < \delta$. Then $x \in (c-\delta, c+\delta)$ and $x \in D$. Therefore $x \in (c-\delta, c+\delta) \cap D$. Hence $x \in f^{-1}(J).$

Now by the definition of pre-image set, we have $f(x) \in J$. Then $|f(x) - f(c)| < \varepsilon$.

It follows that f is continuous at c.