MATH1050 Handout: Image Sets and pre-image sets under ‘nice’ real-valued functions of one real variable

1. ‘Concrete’ examples on image sets under a ‘nice’ function from R to IR.
Let f: R — R be defined by f(x) = 2® — z for any x € R.
(a) o What are f({-1}), f({-1,1}), f({-1,1,1.5})?

e How to read off the answer using the ‘blobs-and-arrows diagram’?
e How to read off the answer using the ‘coordinate diagram’?
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F{~13) = {0}, F{~1,1}) = {0}, F({~1.1,15}) = {0, 1875},
(b) e What is f([0,1.5])?
e How to read off the answer using the ‘coordinate diagram’?
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F(0,1.5]) = [3_\/23,1.875}

(¢) e Whatis f((-1,1))?
e How to read off the answer using the ‘coordinate diagram’?
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(d)

()

e What is f£((0.8,1.5])?
e How to read off the answer using the ‘coordinate diagram’?
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£((0.8,1.5]) = (—0.288,1.875].

—2
How to prove, say, f([0,1.5]) = | —=,1.875|7
prove, sa. £(00.1.8]) = | -2 1875

First ask: what to prove?
This is a set equality.

Then ask: what to do to prove such a set equality?
Prove both (), (1) below:

() For any y, ify € f([0,1.5]) then y € [3_\/23, 1.875} . [This is straightforward to verify.]

-2
(1) Foranyy, ify € [3\/5, 1.875] then y € f([0,1.5]). [This is difficult, but we can make use of the Intermediate

Value Theorem, in light of the fact that f is continuous on R.]

When appropriate we will freely use the continuity of the function f.
[Preparation. Check that f is continuous on [0,1.5]. Also, apply whatever you know (such as, from one-variable

1
calculus) to show that f attains on [0, 1.5] the maximum at 1.5 and the minimum at %]
Argument for (1).

Pick any y. Suppose y € f([0,1.5]). There exists some z € [0,1.5] such that y = f(x).
-2
[Objective. We want to deduce that for this same x, we have —— < f(z) < 1.875.]

3V3

1
} ,and f is strictly increasing on the interval [ 1.5} .

7

1
Note that f is strictly decreasing on the interval {0, ﬁ
By continuity, f attains absolute minimum on [0, 1.5] at 7

By continuity, f attains absolute maximum on [0,1.5] at 0 or at 1.5. Since f(0) = 0 < 1.875 = f(1.5), f
attains absolute maximum on [0, 1.5] at 1.5.

2 1
Now it follows that ———= = f(—=) < f(2) < f(1.5) = 1.875.
373 f(\/g)ff( ) < f(1.5)
—2
Therefore y € | ——=,1.875].
Y {3\/3 }

Argument for (I).

3V3
[Objective. For this same y, we want to name an appropriate x € [0, 1.5] which satisfies y = f(z). So we want
to solve the equation y = f(u) with unknown w in [0, 1.5].]

—2
Pick any y. Suppose y € [, 1.875] .

1 2
Note that f(—=) = ———= and f(1.5) = 1.875.
I \/g) 373 f(L.5)
1
By the Intermediate-Value Theorem, there exists some x € L/g, 1.5] such that f(z) =y.

Note that = € [0,1.5]. Then y € f([0,1.5]).

Remark. This is the statement of the Intermediate Value Theorem:



Let a,b € R, with a < b. Let h : [a,b] — R be a function. Suppose h(a) # h(b). Suppose h is continuous on
[a,b]. Then, for any v € R, if v is strictly between h(a) and h(b) then there exists some ¢ € (a,b) such that

h(c) =~.

2. ‘Concrete’ examples on pre-image sets under a ‘nice’ function from R to R.

2
Let f : IR — R be defined by f(z) = o for any = € IR.
x

(a) o What are f~1({2), J~1({1}), F~1({2.25))?
e How to read off the answer using the ‘blobs-and-arrows diagram’?
e How to interpret what we do in terms of solving equations?
e How to read off the answer using the ‘coordinate diagram’?
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FH2h) = Ao}, ({1 = {-1.1}, fH({2.25}) = 0.

Reminders.
(1) In general, the pre-image set of a non-empty set needs not be non-empty.
(2) In general, the pre-image set of a singleton needs not be a singleton.

(b) e What is £~ ((1,2.25))?
e How to read off the answer using the ‘coordinate diagram’?
e How to interpret what we do in terms of solving equations/inequalities?

FH((1,2.25)) = (=1,1).

(c) e What is f~*([-0.25,1])?
e How to read off the answer using the ‘coordinate diagram’?
e How to interpret what we do in terms of solving equations/inequalies?
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(d) e What is f~! ((;iibv

e How to read off the answer using the ‘coordinate diagram’?

e How to interpret what we do in terms of solving equations/inequalities?
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(e) How to prove, say, f~*((1,2.25)) = (—1,1)?

First ask: what to prove?
This is a set equality.

Then ask: what to do to prove such a set equality?
Prove both (1), () below:

() For any z, if x € f~*((1,2.25)) then z € (—1,1).
(1) For any z, if x € (—1,1) then x € f~'((1,2.25)).

Argument for ().

Pick any 2. Suppose = € f~*((1,2.25)).
[Objective. We want to deduce that = € (—1,1).]

There exists some y € (1,2.25) such that y = f(z

For the same x,y, we have

2
[The inequality 1522 < 2.25 is not useful.]

2
Since 1 < ——, we have 1 + 2% < 2. Then —1 < z < 1. Therefore z € (—1,1).

1+z
Argument for (I).

Pick any x. Suppose z € (—1,1).

[Objective. We want to deduce that there exists some y € (1,2.25) such that y = f(x).]
Take y = f(z). [We want to deduce 1 < y < 2.25. Ask: What does ‘y = f(x)’ give? This gives ‘y =

LIN

).

<

y < 225

We have —1 < z < 1. Then 22 < 1. Therefore 1 <1+ 22 < 2.

2
Since0<1+x2<2,wehavey:f(m):m

22
Therefore 1 < y < 2.25. Hence y € (1,2.25).
Hence z € £~ ((1,2.25)).

Since 1 + 2% > 1, we have y = f(x) = g

>1

<2< 2.25.
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