1. 'Concrete' examples on image sets under a 'nice' function from $\mathbb R$ to $\mathbb R.$

- Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be defined by $f(x) = x^3 x$ for any $x \in \mathbb{R}$.
- (a) What are $f(\{-1\}), f(\{-1,1\}), f(\{-1,1,1.5\})$?
 - How to read off the answer using the 'blobs-and-arrows diagram'?
 - How to read off the answer using the 'coordinate diagram'?

$$f(\{-1\})=\{0\},\ f(\{-1,1\})=\{0\},\ f(\{-1,1,1.5\})=\{0,1.875\}.$$

- (b) What is f([0, 1.5])?
 - How to read off the answer using the 'coordinate diagram'?

- (c) What is f((-1, 1))?
 - How to read off the answer using the 'coordinate diagram'?

(d) • What is f((0.8, 1.5])?
• How to read off the answer using the 'coordinate diagram'?

- f((0.8, 1.5]) = (-0.288, 1.875].
- (e) How to prove, say, $f([0, 1.5]) = \left[\frac{-2}{3\sqrt{3}}, 1.875\right]$?

First ask: what to prove? This is a set equality.

Then ask: what to do to prove such a set equality? Prove both (\dagger) , (\ddagger) below:

- (†) For any y, if $y \in f([0, 1.5])$ then $y \in \left[\frac{-2}{3\sqrt{3}}, 1.875\right]$. [This is straightforward to verify.]
- (‡) For any y, if $y \in \left[\frac{-2}{3\sqrt{3}}, 1.875\right]$ then $y \in f([0, 1.5])$. [This is difficult, but we can make use of the Intermediate Value Theorem, in light of the fact that f is continuous on \mathbb{R} .]

When appropriate we will freely use the continuity of the function f.

[Preparation. Check that f is continuous on [0, 1.5]. Also, apply whatever you know (such as, from one-variable calculus) to show that f attains on [0, 1.5] the maximum at 1.5 and the minimum at $\frac{1}{\sqrt{3}}$.]

Argument for (\dagger) .

Pick any y. Suppose $y \in f([0, 1.5])$. There exists some $x \in [0, 1.5]$ such that y = f(x). [Objective. We want to deduce that for this same x, we have $\frac{-2}{3\sqrt{3}} \leq f(x) \leq 1.875$.]

Note that f is strictly decreasing on the interval $\left[0, \frac{1}{\sqrt{3}}\right]$, and f is strictly increasing on the interval $\left[\frac{1}{\sqrt{3}}, 1.5\right]$. By continuity, f attains absolute minimum on [0, 1.5] at $\frac{1}{\sqrt{3}}$.

By continuity, f attains absolute maximum on [0, 1.5] at 0 or at 1.5. Since f(0) = 0 < 1.875 = f(1.5), f attains absolute maximum on [0, 1.5] at 1.5.

Now it follows that
$$-\frac{2}{3\sqrt{3}} = f(\frac{1}{\sqrt{3}}) \le f(x) \le f(1.5) = 1.875.$$

Therefore $y \in \left[\frac{-2}{3\sqrt{3}}, 1.875\right].$

Argument for (\ddagger) .

Pick any y. Suppose $y \in \left[\frac{-2}{3\sqrt{3}}, 1.875\right]$. [Objective. For this same y, we want to name an appropriate $x \in [0, 1.5]$ which satisfies y = f(x). So we want to solve the equation y = f(u) with unknown u in [0, 1.5].] Note that $f(\frac{1}{\sqrt{3}}) = -\frac{2}{3\sqrt{3}}$ and f(1.5) = 1.875.

By the Intermediate-Value Theorem, there exists some $x \in \left[\frac{1}{\sqrt{3}}, 1.5\right]$ such that f(x) = y. Note that $x \in [0, 1.5]$. Then $y \in f([0, 1.5])$

Note that $x \in [0, 1.5]$. Then $y \in f([0, 1.5])$.

Remark. This is the statement of the Intermediate Value Theorem:

Let $a, b \in \mathbb{R}$, with a < b. Let $h : [a, b] \longrightarrow \mathbb{R}$ be a function. Suppose $h(a) \neq h(b)$. Suppose h is continuous on [a, b]. Then, for any $\gamma \in \mathbb{R}$, if γ is strictly between h(a) and h(b) then there exists some $c \in (a, b)$ such that $h(c) = \gamma$.

2. 'Concrete' examples on pre-image sets under a 'nice' function from $\mathbb R$ to $\mathbb R.$

Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be defined by $f(x) = \frac{2}{x^2 + 1}$ for any $x \in \mathbb{R}$.

- (a) What are $f^{-1}(\{2\}), f^{-1}(\{1\}), f^{-1}(\{2.25\})$?
 - How to read off the answer using the 'blobs-and-arrows diagram'?
 - How to interpret what we do in terms of solving equations?
 - How to read off the answer using the 'coordinate diagram'?

 $f^{-1}(\{2\}) = \{0\}, f^{-1}(\{1\}) = \{-1, 1\}, f^{-1}(\{2.25\}) = \emptyset.$ Reminders.

- (1) In general, the pre-image set of a non-empty set needs not be non-empty.
- (2) In general, the pre-image set of a singleton needs not be a singleton.
- (b) What is $f^{-1}((1, 2.25))$?
 - How to read off the answer using the 'coordinate diagram'?
 - How to interpret what we do in terms of solving equations/inequalities?

 $f^{-1}((1, 2.25)) = (-1, 1).$

- (c) What is $f^{-1}([-0.25, 1])$?
 - How to read off the answer using the 'coordinate diagram'?
 - How to interpret what we do in terms of solving equations/inequalies?

 $f^{-1}([-0.25,1]) = (-\infty,-1] \cup [1,+\infty).$

- (d) What is $f^{-1}\left(\left(\frac{18}{25}, \frac{8}{5}\right]\right)$?
 - How to read off the answer using the 'coordinate diagram'?
 - How to interpret what we do in terms of solving equations/inequalities?

(e) How to prove, say, $f^{-1}((1, 2.25)) = (-1, 1)$?

First ask: what to prove? This is a set equality.

Then ask: what to do to prove such a set equality? Prove both (\dagger) , (\ddagger) below:

- (†) For any x, if $x \in f^{-1}((1, 2.25))$ then $x \in (-1, 1)$.
- (‡) For any x, if $x \in (-1, 1)$ then $x \in f^{-1}((1, 2.25))$.

Argument for (\dagger) .

Pick any x. Suppose $x \in f^{-1}((1, 2.25))$. [Objective. We want to deduce that $x \in (-1, 1)$.] There exists some $y \in (1, 2.25)$ such that y = f(x). For the same x, y, we have $\begin{cases}
2 & -f(x) = -x
\end{cases}$

$$\begin{cases} \frac{2}{1+x^2} = f(x) = y < 2.25\\ \frac{2}{1+x^2} = f(x) = y > 1 \end{cases}$$

[The inequality $\frac{2}{1+x^2} < 2.25$ is not useful.] Since $1 < \frac{2}{1+x^2}$, we have $1 + x^2 < 2$. Then -1 < x < 1. Therefore $x \in (-1, 1)$.

Argument for (\ddagger) .

Pick any x. Suppose $x \in (-1, 1)$. [Objective. We want to deduce that there exists some $y \in (1, 2.25)$ such that y = f(x).] Take y = f(x). [We want to deduce 1 < y < 2.25. Ask: What does 'y = f(x)' give? This gives ' $y = \frac{2}{1+x^2}$ '.] We have -1 < x < 1. Then $x^2 < 1$. Therefore $1 \le 1 + x^2 < 2$. Since $0 < 1 + x^2 < 2$, we have $y = f(x) = \frac{2}{1+x^2} > 1$. Since $1 + x^2 \ge 1$, we have $y = f(x) = \frac{2}{1+x^2} \le 2 < 2.25$. Therefore 1 < y < 2.25. Hence $y \in (1, 2.25)$. Hence $x \in f^{-1}((1, 2.25))$.