1. Definition.

Let A, B be sets and $f: A \longrightarrow B$ be a function from A to B. Let S be a subset of A. The **image set of the set** S **under the function** f is defined to be the set

$$\{y \in B : \text{There exists some } x \in S \text{ such that } y = f(x)\}$$

(or $\{y \in B : y = f(x) \text{ for some } x \in S\}$, or $\{f(x) \mid x \in S\}$). It is denoted by f(S).

Remarks.

- (1) **Terminology.** We write $f(A) = \{y \in B : y = f(x) \text{ for some } x \in A\}$. The set f(A) is called the **image of the function** f.
- (2) **Warning.** 'f(S)' should be understood as one symbol which is the name of some subset of B whose 'content' depends on f and S, according to the predicate

'there exists some
$$x \in S$$
 such that $y = f(x)$ '

for its construction via the Method of Specification.

2. Example of pictorial visualizations of image sets.

Let $A = \{k, \ell, m, n, p, q, r, \dots\}$, $B = \{c, d, e, g, h, i, j, \dots\}$, and $f : A \longrightarrow B$ be the function defined by f(k) = d, $f(\ell) = f(m) = f(n) = e$, f(p) = g, f(q) = f(r) = h, ...

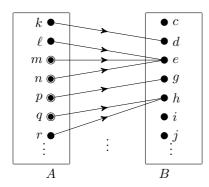
Let
$$S = \{m, n, p, q\}.$$

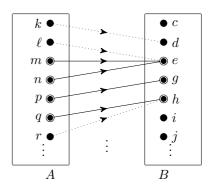
We have $f(S) = \{f(m), f(n), f(p), f(q)\} = \{e, g, h\}.$

(a) 'Blobs-and-arrows diagram'.

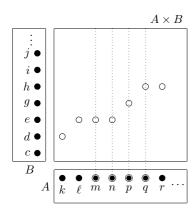
Two equivalent ways to see what f(S) is:

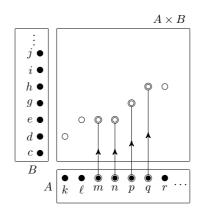
- (i) Examine each $y \in B$. Ask if it is targetted by some $x \in S$ via f. If yes, collect it; if no, throw away.
- (ii) Simply collect the target of every $x \in S$.





(b) 'Coordinate plane diagram'.







3. Definition of pre-image sets.

Let A, B be sets and $f: A \longrightarrow B$ be a function from A to B. Let U be a subset of B. The **pre-image set of the** set U under the function f is defined to be the set

$$\{x \in A : \text{There exists some } y \in U \text{ such that } y = f(x)\}$$

(or $\{x \in A: y = f(x) \text{ for some } y \in U\}$, or $\{x \in A: f(x) \in U\}$). It is denoted by $f^{-1}(U)$.

Warnings.

(1) ' $f^{-1}(U)$ ' should be understood as one symbol which is the name of some subset of A whose 'content' depends on f and U, according to the predicate

'there exists some $y \in U$ such that y = f(x)'

for its construction via the Method of Specification.

(2) The presence of the chain of symbols ' f^{-1} ' in ' $f^{-1}(U)$ ' does not give any hint as to whether f is 'invertible'/bijective as a function or not.

4. Example of pictorial visualizations of pre-image sets.

Let
$$A = \{k, \ell, m, n, p, q, r, \dots\}$$
, $B = \{c, d, e, g, h, i, j, \dots\}$, and $f : A \longrightarrow B$ be the function defined by $f(k) = d$, $f(\ell) = f(m) = f(n) = e$, $f(p) = g$, $f(q) = f(r) = h$, ...

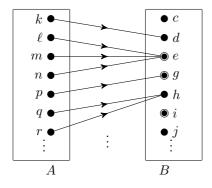
Let
$$U = \{e, g, i\}$$
.

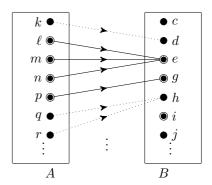
We have
$$f^{-1}(U) = \{\ell, m, n, p\} = \{\ell, m, n\} \cup \{p\} \cup \emptyset = f^{-1}(\{e\}) \cup f^{-1}(\{g\}) \cup f^{-1}(\{i\}).$$

(a) 'Blobs-and-arrows diagram'.

Two equivalent ways to see what $f^{-1}(U)$ is:

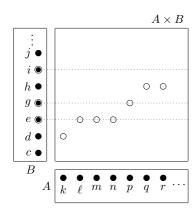
- (i) Examine each $x \in A$. Ask if it targets some $y \in U$ via f. If yes, collect it; if no, throw away.
- (ii) For each $y \in U$, collect whatever in A that targets it, and then 'take union'.

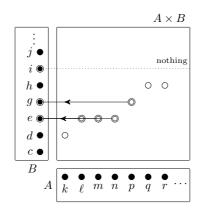




(b) 'Coordinate plane diagram'.

For each $y_0 \in B$, to determine the pre-image set $f^{-1}(\{y_0\})$ of the singleton $\{y_0\}$ under f is the same as to determine the **solution set** of the equation $y_0 = f(x)$ with unknown x in A. We call this set the **level set** at y_0 of the function f. So $f^{-1}(U)$ is the 'union' of the level sets of the y's in U of the function f.





2

