1. Definitions.

- (a) Let A, B, C be sets, and $f: A \longrightarrow B$, $g: B \longrightarrow C$ be functions. Define the function $g \circ f: A \longrightarrow C$ by $(g \circ f)(x) = g(f(x))$ for any $x \in A$. $g \circ f$ is called the **composition** of the functions f, g.
- (b) Let D, R be sets, and $h: D \longrightarrow R$ be a function.
 - i. h is said to be surjective if

(for any $v \in R$ there exists some $u \in D$ such that v = h(u)).

ii. h is said to be **injective** if

(for any $t, u \in D$, if h(t) = h(u) then t = u).

2. Theorem (\sharp_1) .

Let A, B, C be sets, and $f: A \longrightarrow B, g: B \longrightarrow C$ be functions. The following statements hold:

- (1) Suppose f, g are surjective. Then $g \circ f$ is surjective.
- (2) Suppose f, g are injective. Then $g \circ f$ is injective.

3. Proof of Statement (1) of Theorem (\sharp_1) .

Let A, B, C be sets, and $f: A \longrightarrow B, g: B \longrightarrow C$ be functions.

Suppose f, g are surjective. [We want to verify that $g \circ f$ is surjective under this assumption.]

for any ≠ ∈ C, there exists some x ∈ A such that ≠ = (gof)(x). Appropriate argument should read as: Process of conceiving and naming an appropriate candidate of x which satisfies 'xeA' and 't=(gof)(x)', with the help of the surjectivity · } { (Verification of 'x & A' and (z = (gof)(x)' for the x named above.

Proof of Statement (1) of Theorem (\sharp_1) .

Let A, B, C be sets, and $f: A \longrightarrow B, g: B \longrightarrow C$ be functions.

Suppose f, g are surjective. [We want to verify that $g \circ f$ is surjective under this assumption.]

Pick any ₹ € C.

[In the rest of the argument, this ≥ is fixed.]

We want to argue that
there is some x ∈ A satisfying (gof)(x)=Z.

For this ZEC, by the surjectivity of g there exists some yEB such that s(y) = Z. [From now on, this y ('generated' by I) is fixed.] For the same y & B by the surjectivity of f , there exists some $x \in A$ such that f(x) = y. [From now on, this x ('generated' by y, and hence 'generated' by z ultimately) is fixed. For the same ZEC, yEB, XEA, we have $z = g(y) = g(f(x)) = (g \circ f)(x)$. It follows that got is swijective.

Proof of Statement (1) of Theorem (\sharp_1) (without pictures).

Let A, B, C be sets, and $f: A \longrightarrow B, g: B \longrightarrow C$ be functions.

Suppose f, g are surjective.

[We want to verify that $g \circ f$ is surjective under this assumption. By the definition of surjectivity, this is the same as verifying that for any $z \in C$, there exists some $x \in A$ such that $z = (g \circ f)(x)$.]

Pick any $z \in C$.

[We want to argue that for this same z, there is some x satisfying $z = (g \circ f)(x)$.]

For this $z \in C$, by the surjectivity of g, there exists some $y \in B$ such that z = g(y).

For the same $y \in B$, by the surjectivity of f, there exists some $x \in A$ such that y = f(x).

For the same $z \in C$, $x \in A$, we have $z = g(f(x)) = (g \circ f)(x)$.

It follows that $g \circ f$ is surjective.

4. Proof of Statement (2) of Theorem (\sharp_1) .

Let A, B, C be sets, and $f: A \longrightarrow B, g: B \longrightarrow C$ be functions.

Suppose f, g are injective. [We want to verify that $g \circ f$ is injective under this assumption.]

Proof of Statement (2) of Theorem (\sharp_1) .

Let A, B, C be sets, and $f: A \longrightarrow B, g: B \longrightarrow C$ be functions.

Suppose f, g are injective. [We want to verify that $g \circ f$ is injective under this assumption.]

Pick any $x, w \in A$.

In the rest of the argument, these x, w are fixed.

We want to argue that

if $(g \circ f)(x) = (g \circ f)(w)$ then x = w. Suppose (gof)(x)=(gof)(W). Note that (gof)(x) = g(f(x)), and (gof)(w) = g(f(w)). Then g(f(x)) = g(f(w)). By the rijectivity of S, since g(f(w)) = g(f(w)), we have f(x) = f(w).

By the hjectivity of f,

since f(x) = f(w),

we have x = w.

If follows that gof is injective.

Proof of Statement (2) of Theorem (\sharp_1) (without pictures).

Let A, B, C be sets, and $f: A \longrightarrow B, g: B \longrightarrow C$ be functions.

Suppose f, g are injective.

[We want to verify that $g \circ f$ is injective under this assumption. By the definition of injectivity, this is the same as verify that for any $x, w \in A$, if $(g \circ f)(x) = (g \circ f)(w)$ then x = w.]

Pick any $x, w \in A$.

[We want to argue that for the same x, w, if $(g \circ f)(x) = (g \circ f(w))$ then x = w.]

Suppose $(g \circ f)(x) = (g \circ f)(w)$. Then g(f(x)) = g(f(w)).

By the injectivity of g, since g(f(x)) = g(f(w)), we have f(x) = f(w).

By the injectivity of f, since f(x) = f(w), we have x = w.

It follows that $g \circ f$ is injective.

5. Theorem (\sharp_2) .

Let A, B, C be sets, and $f: A \longrightarrow B, g: B \longrightarrow C$ be functions. The following statements hold:

- (1) Suppose $g \circ f$ is surjective. Then g is surjective.
- (2) Suppose $g \circ f$ is injective. Then f is injective.

Proof of Theorem (\sharp_2) . Exercise.

Remark.

The statements below are false. Dis-prove each of them by giving a counter-example.

- (1) Let A, B, C be sets, and $f: A \longrightarrow B, g: B \longrightarrow C$ be functions. Suppose $g \circ f$ is surjective. Then f is surjective.
- (2) Let A, B, C be sets, and $f: A \longrightarrow B$, $g: B \longrightarrow C$ be functions. Suppose $g \circ f$ is injective. Then g is injective.

Further remark.

Which of the statements below are true? Which are false?

- (1) Let A, B be sets, and $f: A \longrightarrow B$, $g: B \longrightarrow A$ be functions. Suppose $g \circ f$ is surjective. Then $f \circ g$ is surjective.
- (2) Let A, B be sets, and $f: A \longrightarrow B$, $g: B \longrightarrow A$ be functions. Suppose $g \circ f$ is injective. Then $f \circ g$ is injective.
- (3) Let A be a set, and $f, g : A \longrightarrow A$ be functions. Suppose $g \circ f$ is surjective. Then $f \circ g$ is surjective.
- (4) Let A be a set, and $f, g : A \longrightarrow A$ be functions. Suppose $g \circ f$ is injective. Then $f \circ g$ is injective.