1. Example (1).

Let $f: \mathbb{C} \longrightarrow \mathbb{C}$ be the function defined by $f(z) = z^2$ for any $z \in \mathbb{C}$.

Is f surjective? Yes. Justification:

- * [What to verify? For any $\zeta \in \mathbb{C}$, there exists some $z \in \mathbb{C}$ such that $f(z) = \zeta$.] Pick any $\zeta \in \mathbb{C}$. Note that $\zeta = 0$ or $\zeta \neq 0$.
 - (†) Suppose $\zeta = 0$. We have $0 \in \mathbb{C}$ and $f(0) = 0 = \zeta$.
 - ‡ Suppose $\zeta \neq 0$. [Try to name some appropriate $z \in \mathbb{C}$ satisfying $f(z) = \zeta$. Roughwork?] There exists some $\theta \in \mathbb{R}$ such that $\zeta = |\zeta|(\cos(\theta) + i\sin(\theta))$.

Take
$$z = \sqrt{|\zeta|} \cdot \left(\cos(\frac{\theta}{2}) + i\sin(\frac{\theta}{2})\right)$$
. By definition, $z \in \mathbb{C}$.

$$f(z) = z^{2} = \left[\sqrt{|\zeta|} \cdot \left(\cos(\frac{\theta}{2}) + i\sin(\frac{\theta}{2})\right)\right]^{2}$$
$$= (\sqrt{|\zeta|})^{2} \cdot \left(\cos(\frac{\theta}{2}) + i\sin(\frac{\theta}{2})\right)^{2} = |\zeta|(\cos(\theta) + i\sin(\theta)) = \zeta$$

It follows that f is surjective.

Remark. Contrast the above result with this statement: The function $p : \mathbb{R} \longrightarrow \mathbb{R}$ given by $p(x) = x^2$ for any $x \in \mathbb{R}$ is not surjective.

2. Example (2).

Let $g: \mathbb{C} \longrightarrow \mathbb{C}$ be the function defined by $g(z) = z^3$ for any $z \in \mathbb{C}$.

Is g injective? No. Justification:

* [What to verify? There exists some $z, w \in \mathbb{C}$ such that $z \neq w$ and g(z) = g(w).] [Try to name some appropriate distinct $z, w \in \mathbb{C}$ satisfying g(z) = g(w). Roughwork?]

Take
$$z=1,\,w=\cos\left(\frac{2\pi}{3}\right)+i\sin\left(\frac{2\pi}{3}\right).\,\left(w=-\frac{1}{2}+\frac{\sqrt{3}}{2}i.\right)$$

Note that $z, w \in \mathbb{C}$ and $z \neq w$.

$$q(z) = 1^3 = 1.$$

$$g(w) = \cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)^3 = \cos(2\pi) + i\sin(2\pi) = 1.$$

Then g(z) = g(w).

It follows that g is not injective.

Remark. Contrast the above result with this statement: The function $q : \mathbb{R} \longrightarrow \mathbb{R}$ given by $q(x) = x^3$ for any $x \in \mathbb{R}$ is injective.

3. Example (3).

Let $n \in \mathbb{N} \setminus \{0,1\}$, and $h : \mathbb{C} \longrightarrow \mathbb{C}$ be the function defined by $h(z) = z^n$ for any $z \in \mathbb{C}$.

Is h surjective? Is h injective?

The respective answers and justifications are similar to what we have done above.

4. Example (4).

Let $a,b \in \mathbb{C}$. Suppose $a \neq 0$. Define the function $f: \mathbb{C} \longrightarrow \mathbb{C}$ by f(z) = az + b for any $z \in \mathbb{C}$.

Is f surjective? Yes. Justification:

* [What to verify? For any $\zeta \in \mathbb{C}$, there exists some $z \in \mathbb{C}$ such that $f(z) = \zeta$.]

Pick any $\zeta \in \mathbb{C}$.

[Try to name some appropriate $z \in \mathbb{C}$ satisfying $f(z) = \zeta$. Roughwork?]

Take
$$z = \frac{\zeta - b}{a}$$
. By definition $z \in \mathbb{C}$. $f(\zeta) = a \cdot \frac{\zeta - b}{a} + b = \zeta$.

It follows that f is surjective.

Is f injective? Yes. Justification:

* [What to verify? For any $z, w \in \mathbb{C}$, if f(z) = f(w) then z = w.] Pick any $z, w \in \mathbb{C}$. Suppose f(z) = f(w). [Try to deduce z = w.] Then az + b = aw + b. Therefore az = aw. Since $a \neq 0$, z = w. It follows that f is injective.

5. Example (5).

Let $a,b,c \in \mathbb{C}$. Suppose $a \neq 0$. Define the function $f:\mathbb{C} \longrightarrow \mathbb{C}$ by $f(z) = az^2 + bz + c$ for any $z \in \mathbb{C}$.

Write
$$\gamma = -\frac{b}{2a}$$
, $\Delta = b^2 - 4ac$. Note that $f(z) = a(z - \gamma)^2 - \frac{\Delta}{4a}$ for any $z \in \mathbb{C}$.

Is f surjective? Yes. Justification:

* [What to verify? For any $\zeta \in \mathbb{C}$, there exists some $z \in \mathbb{C}$ such that $f(z) = \zeta$.] Pick any $\zeta \in \mathbb{C}$.

[Try to name some appropriate $z \in \mathbb{C}$ satisfying $f(z) = \zeta$. Roughwork?]

Note that
$$\zeta = -\frac{\Delta}{4a}$$
 or $\zeta \neq -\frac{\Delta}{4a}$.

(†) Suppose
$$\zeta = -\frac{\Delta}{4a}$$
.

$$\gamma \in \mathbb{C}$$
, and $f(z) = f(\gamma) = a \cdot 0 - \frac{\Delta}{4a} = \zeta$.

 $(\ddagger) \ \text{Suppose } \zeta \neq -\frac{\Delta}{4a}. \ \text{Define } \alpha = \frac{1}{a} \left(\zeta + \frac{\Delta}{4a} \right). \ \text{By definition, } \alpha \in \mathbb{C} \backslash \{0\}.$

There exists some $\theta \in \mathbb{R}$ such that $\alpha = |\alpha|(\cos(\theta) + i\sin(\theta))$.

Take
$$z = \gamma + \sqrt{|\alpha|} \cdot \left(\cos(\frac{\theta}{2}) + i\sin(\frac{\theta}{2})\right)$$
. By definition $z \in \mathbb{C}$.

$$\begin{split} f(z) &= a(z-\gamma)^2 - \frac{\Delta}{4a} &= a \left[\sqrt{|\alpha|} \cdot \left(\cos(\frac{\theta}{2}) + i \sin(\frac{\theta}{2}) \right) \right]^2 - \frac{\Delta}{4a} \\ &= a |\alpha| (\cos(\theta) + i \sin(\theta)) - \frac{\Delta}{4a} = a\alpha - \frac{\Delta}{4a} = \zeta \end{split}$$

It follows that f is surjective.

Is f injective? No. Justification:

* [What to verify? There exist some $z,w\in\mathbb{C}$ such that $z\neq w$ and f(z)=f(w).] [Try to name some appropriate distinct $z,w\in\mathbb{C}$ satisfying f(z)=f(w). Roughwork?]

Take
$$z = \gamma + 1$$
, $w = \gamma - 1$. Note that $z, w \in \mathbb{C}$ and $z \neq w$. $f(z) = a - \frac{\Delta}{4a} = f(w)$.

It follows that f is not injective.

6. Polynomial functions on C.

We introduce these definitions:

- (a) Let $n \in \mathbb{N}$. A degree-n polynomial with complex coefficients and with indeterminate z is an expression of the form $a_n z^n + \cdots + a_1 z + a_0$ in which $a_0, a_1, \cdots, a_n \in \mathbb{C}$ and $a_n \neq 0$.
- (b) Let $f: \mathbb{C} \longrightarrow \mathbb{C}$ be a function. f is said to be a degree-n polynomial function (with complex coefficients) on \mathbb{C} if there exist some $a_0, a_1, \dots, a_n \in \mathbb{C}$ such that $a_n \neq 0$ and $f(z) = a_n z^n + \dots + a_1 z + a_0$ for any $z \in \mathbb{C}$.

The examples above are special cases of these results:

Theorem (1).

Let $n \in \mathbb{N} \setminus \{0,1\}$. Every degree-n polynomial function on \mathbb{C} is surjective.

Theorem (2).

Let $n \in \mathbb{N} \setminus \{0,1\}$. Every degree-n polynomial function on \mathbb{C} is not injective.

Theorem (1) is logically equivalent to the Fundamental Theorem of Algebra:

Every non-constant polynomial with complex coefficient has a root in \mathbb{C} .

Assuming the validity of Theorem (1), we can deduce Theorem (2) easily, with the help of the **Factor Theorem** (whose 'real version' you have already learnt at school and may be carried in verbatim to the 'complex situation' here):

Let $\alpha \in \mathbb{C}$, and p(z) be a degree-n polynomial (with complex coefficients). Suppose α is a root of p(z). Then there is a degree-(n-1) polynomial q(z) (with complex coefficients) so that $p(z) = (z-\alpha)q(z)$ as polynomials.