1. Example (1).

Let $f: \mathbb{C} \longrightarrow \mathbb{C}$ be the function defined by $f(z) = z^2$ for any $z \in \mathbb{C}$. Is f surjective? Yes. Justification:

- * [What to verify? For any $\zeta \in \mathbb{C}$, there exists some $z \in \mathbb{C}$ such that $f(z) = \zeta$.] Pick any $\zeta \in \mathbb{C}$. Note that $\zeta = 0$ or $\zeta \neq 0$.
- (†) Suppose $\zeta = 0$. We have $0 \in \mathbb{C}$ and $f(0) = 0 = \zeta$.
- (‡) Suppose $\zeta \neq 0$. [Try to name some appropriate $z \in \mathbb{C}$ satisfying $f(z) = \zeta$. Roughwork?] \downarrow

There exists some
$$\theta \in \mathbb{R}$$
 such that
$$S = |S| \cdot (\cos(\theta) + i\sin(\theta)).$$
Take $z = |S| \cdot (\cos(\frac{\theta}{2}) + i\sin(\frac{\theta}{2})).$
By definition, $z \in \mathbb{C}$.

Also, $f(z) = z^2 = [IISI \cdot (\cos(\frac{\theta}{2}) + i\sin(\frac{\theta}{2}))]^2$

$$= |S| \cdot (\cos(\theta) + i\sin(\theta)) = S$$

Roughwork.

Solve the equation $Z^2 = S$ with unknown Z in CWrite $S = |S| \cdot (cos(\theta) + i sin(\theta))$ $Z^2 = S$ $Z = ISI \cdot (cos(\frac{\theta}{2}) + i sin(\frac{\theta}{2}))$ or...

It follows that f is surjective.

Remark. Contrast the above result with this statement:

The function $p: \mathbb{R} \longrightarrow \mathbb{R}$ given by $p(x) = x^2$ for any $x \in \mathbb{R}$ is not surjective.

2. Example (2).

Let $g: \mathbb{C} \longrightarrow \mathbb{C}$ be the function defined by $g(z) = z^3$ for any $z \in \mathbb{C}$. Is g injective? No. Justification:

* [What to verify? There exists some $z, w \in \mathbb{C}$ such that $z \neq w$ and g(z) = g(w).] [Try to name some appropriate distinct $z, w \in \mathbb{C}$ satisfying g(z) = g(w). Roughwork?]

Take
$$z=1$$
, $W=CDS\left(\frac{2\pi}{3}\right)+iSDC\left(\frac{2\pi}{3}\right)$.

- , 7, w∈ C
- . 7 + W.
- · \(\g(\forall) = \forall^3 = 1. \tag{7} = \g(\forall) = \g(\fo

It follows that g is not injective.

Remark. Contrast the above result with this statement:

Roughwork.

Ask: What happens when g(z) = g(w)? g(z) = g(w) $\Rightarrow |z|^{2} = |w|^{3}$ $\Rightarrow |z|^{2} = |w|.$ Now ask: Can we name some distinct $z, w \in C$ ment: L satirfying |z| = |w| and g(z) = g(w)

The function $q: \mathbb{R} \longrightarrow \mathbb{R}$ given by $q(x) = x^3$ for any $x \in \mathbb{R}$ is injective.

3. Example (3).

Let $n \in \mathbb{N} \setminus \{0,1\}$, and $h : \mathbb{C} \longrightarrow \mathbb{C}$ be the function defined by $h(z) = z^n$ for any $z \in \mathbb{C}$.

Is h surjective? Is h injective?

4. Example (4).

Let $a, b \in \mathbb{C}$. Suppose $a \neq 0$. Define the function $f : \mathbb{C} \longrightarrow \mathbb{C}$ by f(z) = az + b for any $z \in \mathbb{C}$.

Is f surjective? Yes. Justification:

* [What to verify? For any $\zeta \in \mathbb{C}$, there exists some $z \in \mathbb{C}$ such that $f(z) = \zeta$.]

Pick any $\zeta \in \mathbb{C}$.

[Try to name some appropriate $z \in \mathbb{C}$ satisfying $f(z) = \zeta$. Roughwork?]

Take $\overline{z} = \frac{s-b}{a}$. By definition, $\overline{z} \in \mathbb{C}$. Also, $f(\overline{z}) = a\overline{z} + b = a \cdot \frac{s-b}{a} + b = s$. It follows that f is surjective.

Roughwork.

Solve the equation at tb = 5

with whenow z in C.

az+b=5

az=3-b

z=\frac{3-b}{a}

Is f injective? Yes. Justification:

* [What to verify? For any $z, w \in \mathbb{C}$, if f(z) = f(w) then z = w.] Pick any $z, w \in \mathbb{C}$. Suppose f(z) = f(w). [Try to deduce z = w.]

Then az+b=aw+b.

Therefore az = aw.

Hence z = w.

It follows that f is injective.

5. Example (5).

Let $a, b, c \in \mathbb{C}$. Suppose $a \neq 0$. Define the function $f : \mathbb{C} \longrightarrow \mathbb{C}$ by $f(z) = az^2 + bz + c$ for any $z \in \mathbb{C}$.

Write $\gamma = -\frac{b}{2a}$, $\Delta = b^2 - 4ac$. Note that $f(z) = a(z - \gamma)^2 - \frac{\Delta}{4a}$ for any $z \in \mathbb{C}$. Is f surjective? Yes. Justification:

* [What to verify? For any $\zeta \in \mathbb{C}$, there exists some $z \in \mathbb{C}$ such that $f(z) = \zeta$.] Pick any $\zeta \in \mathbb{C}$.

[Try to name some appropriate $z \in \mathbb{C}$ satisfying $f(z) = \zeta$. Roughwork?]

[Roughwork. Solve the quadratic equation
$$\alpha(z-y)^2 = 3 + \frac{\Delta}{4a}$$
 with unknown $z \in \mathbb{C}$.]

Easy case: $3 = -\frac{\Delta}{4a}$. Less easy case: $3 = -\frac{\Delta}{4a}$.

- (†) Suppose $\zeta = -\frac{\Delta}{4a}$. Take $z = \gamma$. $\cdots f(z) = \cdots = \zeta$.
- (‡) Suppose $\zeta \neq -\frac{\Delta}{4a}$. Define $\alpha = \frac{1}{a} \left(\zeta + \frac{\Delta}{4a} \right)$. By definition, $\alpha \in \mathbb{C} \setminus \{0\}$.

There exists some $\theta \in \mathbb{R}$ such that $\alpha = |\alpha|(\cos(\theta) + i\sin(\theta))$.

Take
$$z = \gamma + \sqrt{|\alpha|} \cdot \left(\cos(\frac{\theta}{2}) + i\sin(\frac{\theta}{2})\right)$$
. $f(z) = \cdots = \zeta$.

It follows that f is surjective.

Example (5).

Let $a, b, c \in \mathbb{C}$. Suppose $a \neq 0$. Define the function $f : \mathbb{C} \longrightarrow \mathbb{C}$ by $f(z) = az^2 + bz + c$ for any $z \in \mathbb{C}$.

Write
$$\gamma = -\frac{b}{2a}$$
, $\Delta = b^2 - 4ac$. Note that $f(z) = a(z - \gamma)^2 - \frac{\Delta}{4a}$ for any $z \in \mathbb{C}$.

Is f injective?

No. Justification?

* [What to verify? There exist some $z, w \in \mathbb{C}$ such that $z \neq w$ and f(z) = f(w).] [Try to name some appropriate distinct $z, w \in \mathbb{C}$ satisfying f(z) = f(w). Roughwork?]

Roughwork.

Ask: what happens when
$$f(z) = f(w)$$
?
$$f(z) = f(w)$$
?

Now ask: Can we name some distinct z , we C satisfying $|z-y|^2 = |w-y|^2$ $|z-y|^2 = |w-y|^2$

Take $z = \gamma + 1$, $w = \gamma - 1$.

Take
$$z = \gamma + 1$$
, $w = \gamma - 1$.

Note that $z, w \in \mathbb{C}$ and $z \neq w$.

$$f(z) = a - \frac{\Delta}{4a} = f(w).$$

It follows that f is not injective.

Known by now: · Every (mean function from C to C' is both surjective and injective.
· Every quadratic function from C to C' is surjective and not injective. How about cubic functions from C to C? • Let $a,b,c,d\in\mathbb{C}$. Suppose $a \neq 0$. Define the function $f:\mathbb{C}\to\mathbb{C}$ by $f(z) = az^3 + bz^2 + cz + d$ for any $z\in\mathbb{C}$. Then it is surjective and not rejective. Why? This is a consequence of the tesult below and the Factor Theorem. Cardano - and - Tartaglia Theorem on cubic equations: · Let A; B, C, D be complex numbers: Suppose A to: Then the equation $Az^3 + Bz^2 + Cz + D = 0$ with unknown z > C has at least one solution z > C, given by the 'cubic formula"....." [Find out what it is by yourself.]

6. Polynomial functions on C.

We introduce these definitions:

- (a) Let $n \in \mathbb{N}$. A degree-n polynomial with complex coefficients and with indeterminate z is an expression of the form $a_n z^n + \cdots + a_1 z + a_0$ in which $a_0, a_1, \cdots, a_n \in \mathbb{C}$ and $a_n \neq 0$.
- (b) Let $f: \mathbb{C} \longrightarrow \mathbb{C}$ be a function. f is said to be a degree-n polynomial function (with complex coefficients) on \mathbb{C} if there exist some $a_0, a_1, \dots, a_n \in \mathbb{C}$ such that $a_n \neq 0$ and $f(z) = a_n z^n + \dots + a_1 z + a_0$ for any $z \in \mathbb{C}$.

The examples above are special cases of these results:

Theorem (1).

Let $n \in \mathbb{N} \setminus \{0,1\}$. Every degree-n polynomial function on \mathbb{C} is surjective.

Theorem (2).

Let $n \in \mathbb{N} \setminus \{0,1\}$. Every degree-n polynomial function on \mathbb{C} is not injective.

Polynomial functions on \mathbb{C} .

Theorem (1).

Let $n \in \mathbb{N} \setminus \{0,1\}$. Every degree-n polynomial function on \mathbb{C} is surjective.

Theorem (2).

Let $n \in \mathbb{N} \setminus \{0,1\}$. Every degree-n polynomial function on \mathbb{C} is not injective.

Theorem (1) is logically equivalent to the **Fundamental Theorem of Algebra**: Every non-constant polynomial with complex coefficient has a root in \mathbb{C} .

We can deduce Theorem (2) from Theorem (1) with the help of the **Factor Theorem**: Let $\alpha \in \mathbb{C}$, and p(z) be a degree-n polynomial (with complex coefficients). Suppose α is a root of p(z).

Then there is a degree-(n-1) polynomial q(z) (with complex coefficients) so that $p(z) = (z - \alpha)q(z)$ as polynomials.