1. Example (1).

Let f : € — C be the function defined by f(z) = 2% for any z € C.

Is f surjective? Yes. Justification:

x [What to verify? For any ¢ € €, there exists some z € € such that f(z2) = (]

Pick any ¢ € €. Note that ¢ =0or ¢ #0.
(1) Suppose ¢ = 0. We have 0 € € and f(0) =0 = (.
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It follows that f is surjective.

Remark. Contrast the above result with this statement:
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The function p : R — R given by p(x) = x* for any x € R is not surjective.




2. Example (2).

Let g : € — € be the function defined by g(z) = 23 for any z € C.

Is g injective? No. Justification:

« [What to verify? There exists some z,w € € such that z # w and g(z) = g(w) ]

[Try to name some appropriate distinct z, w € € satisfying g(z) = g(w)
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Remark. Contrast the above result with this statemenf: L
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The function q : R — R given by q(z) = z? for any x € R is injective.

3. Example (3).

Let n € N\{0,1}, and h : € — C be the function defined by h(z) = 2" for any

z e (.

Is h surjective? Is h injective?



4. Example (4).

Let a,b € C. Suppose a # 0. Define the function f : C — C by f(z) = az + b for
any z € C.

Is f surjective? Yes. Justification:

+ [What to verify? For any ¢ € €, there exists some z € € such that f(z) = (/]

Pick any ¢ € C. oadb =%
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Is f injective? Yes. Justification: ) - A

+ [What to verify? For any z,w € C, if f(z) = f(w) then z = w.|
Pick any z,w € €. Suppose f(z) = f(w). [Try to deduce z = w|
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5. Example (5).

Let a,b,c € €. Suppose a # 0. Define the function f : € — C by f(z) = az’+bz+c

for any z € (.

b A
Write v = ~5 A = b? — 4ac. Note that f(2) = a(z —7)* — T for any z € C.
a a

Is f surjective? Yes. Justification:

* [What to verify? For any ¢ € €, there exists some z 6 (]: such that f(z) = (|
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There exists some 6 € R such that o = |a|(cos(8) + ¢sin(0)).

Take z = v+ /]| - (cos —H'sin(g)). ------ f(z)=---=C.

[t follows that f is surjective.



Example (5).

Let a,b,c € C. Suppose a # 0. Define the function f : € — C by f(z) = az*+bz+c

for any z € C.
. b 5 , A |
Write v = —5 A = b? — 4ac. Note that f(z) = a(z —7v)* — o for any z € C.
a a

Is f injective?
No. Justification?

+« [What to verify? There exist some z,w € € such that z # w and f(z) = f(w)]

[Try to name some appropriate distinct z,w € Csatisfying f(z) = f(w).
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Note that z,w € C and z # w.

fe) = a2 = f(w)

[t follows that f is not injective.
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6. Polynomial functions on C.

We introduce these definitions:

(a) Let n € N. A degree-n polynomial with complex coeflicients and with
indeterminate z is an expression of the form a,z" + --- + a1z + a9 in which
ap, ai, - ,a, € Cand a, # 0.

(b) Let f : € — C be a function. f is said to be a degree-n polynomial function
(with complex coefficients) on C if there exist some ag,ay,- - ,a, € € such
that a, # 0 and f(z) = apz"+ -+ -+ a1z + ag for any z € €.

The examples above are special cases of these results:

Theorem (1).
Let n € N\{0,1}. Every degree-n polynomial function on C is surjective,

Theorem (2).
Let n € N\{0,1}. Every degree-n polynomial function on C is not injective.



Polynomial functions on C.
Theorem (1).
Let n € N\{0,1}. Every degree-n polynomial function on C is surjective.

Theorem (2).
Let n € N\{0,1}. Every degree-n polynomial function on C is not injective.

Theorem (1) is logically equivalent to the Fundamental Theorem of Algebra:

Every non-constant polynomial with complex coefficient has a root in C.

We can deduce Theorem (2) from Theorem (1) with the help of the Factor Theorem :
Let a € C, and p(z) be a degree-n polynomial (with complex coefficients).
Suppose « is a root of p(z).

Then there is a degree-(n — 1) polynomial q(z) (with complex coeflicients) so that
p(z) = (z — a)q(2) as polynomials.



