
1. Intermediate-Value Theorem. (Bolzano’s version.)
Let a, b ∈ R, with a < b. Let f : [a, b] −→ R be a function.
Suppose f (a)f (b) < 0.
Suppose f is continuous on [a, b].
Then there exists some x0 ∈ (a, b) such that f (x0) = 0.

Intermediate-Value Theorem. (‘General’ version.)
Let a, b ∈ R, with a < b. Let h : [a, b] −→ R be a function.
Suppose h(a) ̸= h(b).
Suppose h is continuous on [a, b].
Then, for any γ ∈ R, if γ is strictly between h(a) and h(b) then there exists some c ∈ (a, b)

such that h(c) = γ.

The two versions of the Intermediate Value Theorem are logically equivalent to each other.
The justification of the logical equivalence is easy and is left as an exercise.
The proof of the Intermediate Value Theorem will be given in your Analysis course.
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2. Definition. (Strict monotonicity.)
Let I be an interval, and h : D −→ R be a real-valued function of one real variable with
domain D which contains I as a subset entirely.

(a) h is said to be strictly increasing on I if the statement (St-I) holds:
(St-I) For any s, t ∈ I , if s < t then h(s) < h(t).

(b) h is said to be strictly decreasing on I if the statement (St-D) holds:
(St-D) For any s, t ∈ I , if s < t then h(s) > h(t).

(c) h is said to be strictly monotonic on I if h is strictly increasing on I or h is strictly
decreasing on I .

Remark. When D = I , we may simply omit the words ‘on I ’
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3. Theorem (1).
Let J be an interval in R, and g : J −→ R be a function.
Suppose g is strictly monotonic on J . Then g is injective.
Remark. The proof of Theorem (1) is easy and is left as an exercise.

Further remark. The converse of Theorem (1), which is the statement (†) below, is
false:
(†) Let J be an interval in R, and g : J −→ R be a function.

Suppose g is injective. Then g is strictly monotonic on J .
One counter-example against the statement (†) is provided by the function g : R −→ R

defined by

g(x) =

{
x if x ∈ Q

−x if x ∈ R\Q
.

In fact, although g is injective, g fails to be strictly monotonic on any interval at all. It
seems that the problem for the function g is that its graph is ‘broken’ (or more formally, g
is not continuous).
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4. Theorem (2).
Let J be an interval in R, and g : J −→ R be a function.
Suppose g is continuous on J .
Suppose g is injective. Then g is strictly monotonic on J .

Remark. The proof of Theorem (2) relies on Lemma (3).
Further remark. It is impossible for a real-valued function of one real-variable, having
an interval as a domain and being continuous throughout that interval, to be injective but
to fail to be strictly monontonic on that interval.

5. Lemma (3).
Let a, b ∈ R with a < b, and f : [a, b] −→ R be a function.

Suppose f is continuous on [a, b]. Suppose f is injective, and
{

f (a) < f (b)

f (a) > f (b)

}
.

Then f is
{

strictly increasing
strictly decreasing

}
on [a, b].

Remark. Lemma (3) is a consequence of the Intermediate Value Theorem.

4







8. Definition. (Boundedness for real-valued functions of one real variable.)
Let I be an interval, and h : D −→ R be a real-valued function of one real variable with
domain D which contains I as a subset entirely.

(a) Let β ∈ R.

h is said to be
{

bounded above
bounded below

}
in R by β on I if for any x ∈ I ,

{
h(x) ≤ β

h(x) ≥ β

}
.

Such a number β is called a(n)
{

upper bound
lower bound

}
of the function h in R on I .

(b) h is said to be bounded above in R on I if h has an upper bound in R on I .
(c) h is said to be bounded below in R on I if h has a lower bound in R on I .
(d) h is said to be bounded in R on I if h is bounded above in R on I and bounded below

in R on I .
Remark. When D = I , we simply omit the words ‘on I ’.
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9. Theorem (4).
Let I be an interval in R, and g : I −→ R be a function.
Suppose g is surjective. Then g is neither bounded above in R nor bounded below in R.
Proof of Theorem (4). Exercise. (This is easy.)

Remark. The converse of Theorem (4), which is the statement (†′) below, is false:
(†′) Let I be an interval in R, and g : I −→ R be a function.

Suppose g is neither bounded above in R nor bounded below in R. Then g is surjective.
One counter-example against the statement (†′) is provided by the function g : R −→ R

defined by

g(x) =

{
x if x ∈ Q

0 if x ∈ R\Q
.

In fact, although g is neither bounded above in R nor bounded below in R, g fails to be
surjective. It seems that the problem for the function g is that its graph is ‘broken’ (or more
formally, g is not continuous).
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10. Theorem (5).
Let J be an interval in R, and g : J −→ R be a function.
Suppose g is continuous on J .
Further suppose g is neither bounded above in R nor bounded below in R.
Then g is surjective.

Remark. Theorem (5) is a consequence of the Intermediate Value Theorem.

11. Corollary (6).
Let J be an open interval, with J = (∗, ⋆), and g : J −→ R be a function. (Here ∗ stands
for a real number a or the symbol −∞, and ⋆ stands for a real number b or the symbol
+∞.)
Suppose g is continuous on J .

Further suppose

 lim
x→∗+

g(x) = −∞

lim
x→∗+

g(x) = +∞

 and

 lim
x→⋆−

g(x) = +∞

lim
x→⋆−

g(x) = −∞

. (Here ∗+ stands for

the symbol a+ or the symbol −∞, and ⋆− stands for the symbol b− or the symbol +∞.)
Then g is surjective.
Remark. Corollary (6) is a consequence of Theorem (5).
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