1. Intermediate-Value Theorem. (Bolzano’s version.)
Let a,b € R, with a < b. Let f : |a,b] — IR be a function.
Suppose f(a)f(b) < 0.

Suppose f is continuous on |a, b).

Then there exists some g € (a,b) such that f(xy) = 0.

Intermediate-Value Theorem. (‘General’ version.)
Let a,b € R, with a < b. Let h : |a,b] — R be a function.
Suppose h(a) # h(b).

Suppose h is continuous on |a, b).

Then, for any v € R, if v is strictly between h(a) and h(b) then there exists some ¢ € (a, b)
such that h(c) = 7.

The two versions of the Intermediate Value Theorem are logically equivalent to each other.
The justification of the logical equivalence is easy and is left as an exercise.

The proof of the Intermediate Value Theorem will be given in your Analysis course.
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2. Definition. (Strict monotonicity.)
Let I be an interval, and h : D — R be a real-valued function of one real variable with
domain D which contains I as a subset entirely.
(a) h is said to be strictly increasing on I if the statement (St-1) holds:
(St-I)  For any s,t € I, if s <t then h(s) < h(t).
(b) h is said to be strictly decreasing on [ if the statement (St-D) holds:
(St-D)  For any s,t € I, if s <t then h(s) > h(t).
(¢) h is said to be strictly monotonic on I if h is strictly increasing on I or h is strictly

decreasing on 1.

Remark. When D = I, we may simply omit the words ‘on [’
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3. Theorem (1).
Let J be an interval in R, and g : J — IR be a function.
Suppose g is strictly monotonic on J. Then g is injective.

Remark. The proof of Theorem (1) is easy and is left as an exercise.

Further remark. The converse of Theorem (1), which is the statement (}) below, is
false:

(1) Let J be an interval in IR, and g : J — R be a function.

Suppose g Is injective. Then g is strictly monotonic on J.

One counter-example against the statement (7) is provided by the function g : IR — IR

defined by
r if xe®
g(x) = |
—z if z € R\Q

In fact, although g is injective, g fails to be strictly monotonic on any interval at all. It
seems that the problem for the function g is that its graph is ‘broken’ (or more formally, g
is not continuous).



4. Theorem (2).
Let J be an interval in R, and g : J — IR be a function.
Suppose g Is continuous on J.

Suppose g Is injective. Then g is strictly monotonic on J.

Remark. The proof of Theorem (2) relies on Lemma (3).

Further remark. It is impossible for a real-valued function of one real-variable, having
an interval as a domain and being continuous throughout that interval, to be injective but
to fail to be strictly monontonic on that interval.

5. Lemma (3).
Let a,b € R with a < b, and f : |a,b] — R be a function.

f
f

2=

< f(b)
> f(b) |

Suppose f is continuous on [a, b]. Suppose f is injective, and {

Then f is str{'ct]y jncreasj‘ng on [a,b].
strictly decreasing

Remark. Lemma (3) is a consequence of the Intermediate Value Theorem.
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6. Proof of Lemma (3), for the case ‘f(a) < f(b)"
Let a,b € R with a < b, and f : [a,b] — R be a function.

Suppose f is continuous on [a, b]. Suppose [ is mJectlve

Suppose f(a) < f(b). | Wat to deduce : (T % Wad{ \cmg o~ [a, LKI

Pick any s,t € [a,b]. Suppose s < t. Then by 1nJect1V1ty,
Therefore f(s) < f(t) or f(s) > f(t). [We want to rule out f( ) f( ). Ask: What is

wrong with it?]
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7. Proof of Theorem (2).
Let J be an interval in IR, and g : J — R be a function.
Suppose ¢ is continuous on J. Suppose ¢ is injective.
Further suppose g were were not strictly monotonic on J.

[We are going to look for a contradiction. |

By assumption, g would be neither strictly increasing on J nor strictly decreasing on J.

[Ask. So what may go wrong?]
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8. Definition. (Boundedness for real-valued functions of one real variable.)

domain D which contains I as a subset entirely:
(a) Let B € R.

bounded above
bounded below

IV IA

Let I be an interval, and h : D — IR be a real-valued function of one real variable with
: . h(z)
in R by Son [ ifforanyx € I,

B
h(z) = 5

} of the function /4 in IR on /.

h is said to be {

Such a number ( is called a(n) { Tpper ]z)oun((ii
ower boun

(b) h is said to be bounded above in IR on [ if h has an upper bound in IR on 1.
(¢) h is said to be bounded below in IR on [ if h has a lower bound in R on I.

(d) h is said to be bounded in R on [ if h is bounded above in IR on I and bounded below
in R on I.

Remark. When D = I, we simply omit the words ‘on I’



9. Theorem (4).
Let I be an interval in IR, and g : I — IR be a function.
Suppose g Is surjective. Then g is neither bounded above in IR nor bounded below in RR.

Proof of Theorem (4). Exercise. (This is easy.)

Remark. The converse of Theorem (4), which is the statement (1') below, is false:

(1) Let I be an interval in IR, and g : I — IR be a function.

Suppose g is neither bounded above in IR nor bounded below in IR. Then g is surjective.

One counter-example against the statement ({') is provided by the function g : R — IR

defined by
xif v €@
g(x) = {

0 if x € R\Q
In fact, although g is neither bounded above in IR nor bounded below in IR, g fails to be

surjective. It seems that the problem for the function g is that its graph is ‘broken’ (or more
formally, ¢ is not continuous).



10. Theorem (5).

1.

Let J be an interval in R, and g : J — IR be a function.
Suppose g Is continuous on J.
Further suppose g is neither bounded above in IR nor bounded below in IR.

Then g is surjective.

Remark. Theorem (5) is a consequence of the Intermediate Value Theorem.

Corollary (6).

Let J be an open interval, with J = (x,%), and g : J — R be a function. (Here % stands
for a real number a or the symbol —oo, and x stands for a real number b or the symbol
+00.)

Suppose g Is continuous on J.

lim+g(:t) = —00 lim g(z) = +o0

Further suppose { “* and { 7 . (Here ™ stands for
11m+g(x) = 400 lim g(x) = —o0
T—>% T—%—

the symbol a™ or the symbol —oo, and *~ stands for the symbol b~ or the symbol +00.)
Then g is surjective.

Remark. Corollary (6) is a consequence of Theorem (5).



12. Proof of Theorem (5).
Let J be an interval in R, and ¢ : J — R be a function.
Suppose g is continuous on J. Further suppose g is neither bounded above in IR nor bounded

below in IR. K\J KLJM o \;P/v‘g‘] . Tox ” 7€R/ TW ks Some xe\j 5uoLTLﬁ( \1;5&):‘

We verity that g is surjective:
Pick any y € R. E'M o name Sme ><€j fw Hid y =00 ]

[Idea. We want to place y strictly between two numbers (with possibly ‘large’ magni-

tudes) which are ‘outputs’ of g. Then the Intermediate Value Theorem will guarantees
that y = g(u) with unknown v in J will have a solution.]
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