MATH1050 Surjectivity and injectivity for 'nice' real-valued functions of one real variable.

1. Let $f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8 : \mathbb{R} \longrightarrow \mathbb{R}$ be the functions defined by

$$f_1(x) = 0.1x^3, \qquad f_2(x) = \sqrt[5]{x} - 1, \qquad f_3(x) = x^5 - 2x^3 + x, \qquad f_4(x) = 0.25x^2 \sin(10x),$$

$$f_5(x) = 1.3^x, \qquad f_6(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}, \qquad f_7(x) = \frac{1}{x^2 + 1}, \qquad f_8(x) = 4^{\sin(4x)}$$

for any $x \in \mathbb{R}$.

Here are rough sketches of the respective graphs of the above functions:

- 2. Which of f_1, \dots, f_8 is/are surjective? Which not?
 - f_1, f_2, f_3, f_4 are surjective.
 - f_5, f_6, f_7, f_8 are not surjective.

Question. How to see which is surjective and which not, for such functions from \mathbb{R} to \mathbb{R} ?

Answer (b1). Inspect the graph of f_1, \dots, f_8 on the 'coordinate plane'.

• i = 1, 2, 3, 4. Why surjective?

At each 'altitude' $b \in \mathbb{R}$, the horizontal line y = b cuts the graph of f_i at least once. Some $x_b \in \mathbb{R}$ satisfies $y = f_i(x_b)$.

• i = 5, 6, 7, 8. Why not surjective? At some 'altitude' $b_0 \in \mathbb{R}$, the horizontal line $y = b_0$ cuts the graph of f_i nowhere. No $x \in \mathbb{R}$ satisfies $b_0 = f_i(x)$.

Answer (b2). We re-interpret (b1) in terms of solving equations.

- i = 1, 2, 3, 4. Why surjective? For each $b \in \mathbb{R}$, the equation $b = f_i(u)$ with 'unknown' u in \mathbb{R} has at least one solution in \mathbb{R} .
- i = 5, 6, 7, 8. Why not surjective? There is some $b_0 \in \mathbb{R}$ for which the equation $b_0 = f(u)$ with 'unknown' u in \mathbb{R} has no solution in \mathbb{R} .

Answer (a). Directly verify the condition (S) or its negation respectively.

- i = 1, 2, 3, 4. [Recall the statement (S).]
 - * How do we check the surjectivity of f_1 , in practice?
 - Pick any $y \in \mathbb{R}$. [This y is kept fixed in the discussion below.]
 - [We name a candidate $x \in \mathbb{R}$ for which $y = f_1(x)$. An appropriate candidate is given by a solution of the equation $y = f_1(u)$ with unknown u in \mathbb{R} .]
 - Take $x = \sqrt[3]{10y}$. By definition, $x \in \mathbb{R}$.
 - We have $f_1(x) = 0.1x^3 = 0.1(\sqrt[3]{10y})^3 = 0.1(10y) = y$.
 - * How about f_2 ? [Exercise.]

Remark. Things are more difficult in practice for f_3, f_4 , when we do not make use of the calculus. (Why?)

• i = 5, 6, 7, 8. [Recall the statement $\sim(S)$.]

* How do we check the non-surjectivity of f_8 , in practice?

[Name a candidate $y_0 \in \mathbb{R}$ for which $y_0 \neq f_8(x)$ for any $x \in \mathbb{R}$. We are aware that for any $x \in \mathbb{R}$, $4^{-1} \leq 4^{\sin(4x)} \leq 4$.]

Take $y_0 = 5$. Pick any $x \in \mathbb{R}$. We have $f_8(x) = 4^{\sin(4x)} \le 4 < 5$. Hence $f_8(x) \ne y_0$.

* How about f_6 ?

[How to find a candidate y_0 satisfying $y_0 \neq f(x)$ for any $x \in \mathbb{R}$? Look for a necessary condition for the statement ' $x, y \in \mathbb{R}$ and $y = f_6(x)$ '. For such x, y, we have $|y| = \left| \frac{e^x - e^{-x}}{e^x + e^{-x}} \right| = \frac{|e^x - e^{-x}|}{e^x + e^{-x}} \leq \frac{|e^x| + |e^{-x}|}{e^x + e^{-x}} = 1$. Now a candidate y_0 can be chosen in $\mathbb{R} \setminus [-1, 1]$.] Take $y_0 = 2$. For any $x \in \mathbb{R}$, we have $|f_6(x)| = \left| \frac{e^x - e^{-x}}{e^x + e^{-x}} \right| \leq 1 < 2$. Then $f_6(x) \neq y_0$.

* How about f_5, f_7 ? [Exercise.]

- 3. Which of f_1, \dots, f_8 is/are injective? Which not?
 - f_1, f_2, f_5, f_6 are injective.
 - f_3, f_4, f_7, f_8 are not injective.

Question. How to see which is injective and which not, for such functions from \mathbb{R} to \mathbb{R} ?

Answer (b1). Inspect the graph of f_1, \dots, f_8 on the 'coordinate plane'.

- i = 1, 2, 5, 6. Why injective? At each 'altitude' $b \in \mathbb{R}$, the horizontal line y = b cuts the graph of f_i at most once: no two distinct x, w satisfy $f_i(x) = f_i(w)$.
- i = 3, 4, 7, 8. Why not injective? At some 'altitude' $b_0 \in \mathbb{R}$, the horizontal line $y = b_0$ cuts the graph of f_i twice or more: some distinct x, w satisfy $f_i(x) = f_i(w)$.

Answer (b2). We re-interpret (b1) in terms of solving equations.

• i = 1, 2, 5, 6. Why injective?

For each $b \in \mathbb{R}$, the equation $b = f_i(u)$ with 'unknown' u in \mathbb{R} has at most one solution in \mathbb{R} .

• i = 3, 4, 7, 8. Why not injective? There is some value $b_0 \in \mathbb{R}$ for which the equation $b_0 = f_i(u)$ with 'unknown' u in \mathbb{R} has two or more solutions in \mathbb{R} .

Answer (a). Directly verify the condition (I) or its negation respectively.

• i = 1, 2, 5, 6. [Recall the statement (I).]

* How do we check the injectivity of f_6 , in practice?

Pick any $x, w \in \mathbb{R}$. [These x, w are fixed in the discussion below. We verify that if $f_6(x) = f_6(w)$ then x = w.]

Suppose
$$f_6(x) = f_6(w)$$
.
Then $\frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^w - e^{-w}}{e^w + e^{-w}}$.
Therefore $e^{x+w} + e^{x-w} - e^{-x+w} - e^{-x-w} = (e^x - e^{-x})(e^w + e^{-w}) = (e^x + e^{-x})(e^w - e^{-w}) = e^{x+w} - e^{x-w} + e^{-x+w} - e^{-x-w}$.
Hence $2e^{x-w} = 2e^{-x+w}$. We have $x - w = -x + w$. Then $x = w$.
* How about f_1 ?
Pick any $x, w \in \mathbb{R}$. Suppose $f_1(x) = f_1(w)$.
Then $0.1x^3 = f_1(x) = f_1(w) = 0.1w^3$.
We have $0 = x^3 - w^3 = (x - w)(x^2 + xw + w^2)$.
Then $x - w = 0$ or $x^2 + xw + w^2 = 0$.
(Case 1). Suppose $x - w = 0$. Then $x = w$.
(Case 2). Suppose $x^2 + xw + w^2 = 0$. Then $\frac{x^2}{2} + \frac{w^2}{2} + \frac{(x + w)^2}{2} = 0$. So $x = w = 0$.
In any case $x = w$.
* How about f_2, f_5 ? [Exercise.]

- i = 3, 4, 7, 8. [Recall the statement $\sim(I)$.]
 - * How do we check the non-injectivity of f_7 , in practice?

[Name $x_0, w_0 \in \mathbb{R}$ for which $x_0 \neq w_0$ and $f_7(x_0) = f_7(w_0)$. Try this roughwork: Start with the 'relation' $f_7(x_0) = f_7(w_0)$ ' to see what may prevent us from obtaining ' $x_0 = w_0$ '.] Take $x_0 = \frac{1}{2}, w_0 = -\frac{1}{2}. x_0 \neq w_0$. $f_7(x_0) = \frac{1}{1 + (1/2)^2} = \frac{4}{5}.$ $f_7(w_0) = \frac{1}{1 + (-1/2)^2} = \frac{4}{5}. f_7(x_0) = f_7(w_0).$ * How about f_3, f_4, f_8 ? [Exercise.]