1. Let $f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8 : \mathbb{R} \longrightarrow \mathbb{R}$ be the functions defined by

$$f_1(x) = 0.1x^3$$
, $f_2(x) = \sqrt[5]{x} - 1$, $f_3(x) = x^5 - 2x^3 + x$, $f_4(x) = 0.25x^2 \sin(10x)$,

$$f_5(x) = 1.3^x$$
, $f_6(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$, $f_7(x) = \frac{1}{x^2 + 1}$, $f_8(x) = 4^{\sin(4x)}$

for any $x \in \mathbb{R}$.

Rough sketches of the respective graphs of the above functions:

- 2. Which of f_1, \dots, f_8 is/are surjective? Which not?
 - f_1, f_2, f_3, f_4 are surjective.

• f_5, f_6, f_7, f_8 are not surjective.

Question. How to see the answer for such functions from IR to IR?

Answer (b1). Inspect the graph of f_1, \dots, f_8 on the 'coordinate plane'.

• i = 1, 2, 3, 4. Why surjective? At each 'altitude' $b \in \mathbb{R}$, the horizontal line y = b cuts the graph of f_i at least once.

Some $x_b \in \mathbb{R}$ satisfies $y = f_i(x_b)$.

• i = 5, 6, 7, 8. Why not surjective? At some 'altitude' $b_0 \in \mathbb{R}$, the horizontal line $y = b_0$ cuts the graph of f_i nowhere.

No $x \in \mathbb{R}$ satisfies $b_0 = f_i(x)$.

Answer (b2). Re-interpret (b1) in terms of solving equations.

- i = 1, 2, 3, 4. Why surjective? For each $b \in \mathbb{R}$, the equation $b = f_i(u)$ with 'unknown' u in \mathbb{R} has at least one solution in \mathbb{R} .
- i = 5, 6, 7, 8. Why not surjective? There is some $b_0 \in \mathbb{R}$ for which the equation $b_0 = f(u)$ with 'unknown' u in \mathbb{R} has no solution in \mathbb{R} .

Answer (a). Directly verify the condition (S) or its negation respectively.

• i = 1, 2, 3, 4. Surjectivity? [Recall the statement (S).]

Vy & R, (3x & R such that y = f, (x). * How do we check the surjectivity of f_1 , in practice?

 \rightarrow Pick any $y \in \mathbb{R}$. [This y is kept fixed in the discussion below.]

[We name a candidate $x \in \mathbb{R}$ for which $y = f_1(x)$. An appropriate candidate is

given by a solution of the equation $y = f_1(u)$ with unknown u in \mathbb{R} .

Take x = 3/10y. By definition, x∈R.
 (a) Also, f₁(x) = 0.1 x² = 0.1(² Joy)² = (0.1)·(10y) = y.
 It follow that f₁ is surjective.

* How about f_2 ? [Exercise.]

Pick any yelR. Take $x = (y+1)^5$.

By definition, $x \in \mathbb{R}$.

Also, $f_2(x) = 5\sqrt{x-1} = 5\sqrt{(y+1)^5} - 1 = (y+1)^{-1-2}y$. It follows that for is surjective.

Roughwork: Solve y=f,(4) with unknown u n R.

Roughwork: Solve y=f_(u) with whenown u 2 R. y=5/1-1 $5\sqrt{u} = 9+1$ $u = (9+1)^{5}$

Remark. Things are more difficult in practice for f_3 , f_4 , when we do not make use of the calculus. (Why?)

Answer (a). Directly verify the condition (S) or its negation respectively.

• i = 5, 6, 7, 8. Non-surjectivity? [Recall the statement $\sim(S)$.]

* How do we check the non-surjectivity of f_8 , in practice? $\exists y_0 \in \mathbb{R}$ such that $(\forall x \in \mathbb{R}, y_0 + f_8(x))$.

Name a candidate $y_0 \in \mathbb{R}$ for which $y_0 \neq f_8(x)$ for any $x \in \mathbb{R}$. We are aware

that for any $x \in \mathbb{R}, 4^{-1} \le 4^{\sin(4x)} \le 4$.

• Pick any x∈ R. We have f(x) = 4^{sin(4x)} ≤ 4 < 5 = y.
</p>

Herce yo + fo(x).

It follows that f_8 is not surjective. a * How about f_6 ?

[Roughwork: Observe that for any
$$x \in \mathbb{R}$$
,

$$|f(x)| = \left| \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} \right| = \frac{|e^{x} - e^{-x}|}{e^{x} + e^{-x}} \le \frac{|e^{x}| + |e^{-x}|}{e^{x} + e^{-x}} = |...$$

Take y, = 2. . Note that $y \in \mathbb{R}$.

Pick any $x \in \mathbb{R}$. We have $|f_6(x)| = |\frac{e^x - e^{-x}}{e^x + e^{-x}}| \leq |\langle 2^{-2}y \rangle$. Then $f_6(x) \neq y \rangle$.

It follows that $f_6(x) = |f_6(x)| = |$

* How about f_5, f_7 ? [Exercise.]

- 3. Which of f_1, \dots, f_8 is/are injective? Which not?
 - f_1, f_2, f_5, f_6 are injective.

• f_3, f_4, f_7, f_8 are not injective.

Question. How to see which is injective and which not, for such a real-valued function of one real variable?

Answer (b1). Inspect the graph of f_1, \dots, f_8 .

- i = 1, 2, 5, 6. Why injective? At each 'altitude' $b \in \mathbb{R}$, the horizontal line y = b cuts the graph of f_i at most once: no two distinct x, w satisfy $f_i(x) = f_i(w)$.
- i = 3, 4, 7, 8. Why not injective? At some 'altitude' $b_0 \in \mathbb{R}$, the horizontal line $y = b_0$ cuts the graph of f_i twice or more: some distinct x, w satisfy $f_i(x) = f_i(w)$.

Answer (b2). We re-interpret (b1) in terms of solving equations.

- i = 1, 2, 5, 6. Why injective? For each $b \in \mathbb{R}$, the equation $b = f_i(u)$ with 'unknown' u in \mathbb{R} has at most one solution in \mathbb{R} .
- i = 3, 4, 7, 8. Why not injective? There is some value $b_0 \in \mathbb{R}$ for which the equation $b_0 = f_i(u)$ with 'unknown' u in \mathbb{R} has two or more solutions in \mathbb{R} .

Answer (a). Directly verify the condition (I) or its negation respectively.

• i = 1, 2, 5, 6. Injectivity? [Recall the statement (I).]

* How do we check the injectivity of f_6 , in practice? $\forall \times, w \in \mathbb{R}$, $(if) f_6(w) = f_6(w)$ then x = w.

 \nearrow Pick any $x, w \in \mathbb{R}$. [These x, w are fixed in the discussion below. We verify that if f(x) = f(w) then x = w.

Suppre
$$f(x) = f(w)$$
.

Then $\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} = \frac{e^{w} - e^{-w}}{e^{w} + e^{-w}}$.

Therefore $e^{x+w} + e^{x-w} - e^{-x+w} - e^{-x-w} = (e^x - e^{-x})(e^w + e^{-w}) = (e^x + e^{-x})(e^w - e^{-w})$ Therefore $e^{x+w} + e^{x-w} - e^{-x+w} - e^{-x-w} = (e^x - e^{-x})(e^w + e^{-w}) = (e^x + e^{-x})(e^w - e^{-w})$ $= e^{x+w} - e^{x+w} - e^{-x+w} - e^{-x+w}$ Therefore $e^{x+w} + e^{x-w} - e^{-x+w} - e^{-x-w} = (e^x - e^{-x})(e^w + e^{-w}) = (e^x + e^{-x})(e^w - e^{-w})$ $= e^{x+w} - e^{x+w} - e^{-x+w} - e^{-$

* How about f_1 ?

Pick any
$$x, w \in \mathbb{R}$$
. Suppose $f(w) = f(w)$.
Then $0.1 \times^3 = 0.1 \, \text{M}^3$.
Therefore $(x - W)(x^2 + xw + W^2) = x^3 - W^3 = 0$.
 $: \leftarrow [your work.]$
Hence $x = w$.
It follows that $f(w) = f(w)$.

* How about f_2, f_5 ? [Exercise.]

Answer (a). Directly verify the condition (I) or its negation respectively.

• i = 3, 4, 7, 8. Non-injectivity? [Recall the statement $\sim(I)$.]

How do we check the non-injectivity of f_7 , in practice? $\exists x_0, w_0 \in \mathbb{R}$ and that $x_0 \neq w_0$ and $f_7(w_0) = f_7(w_0)$.

[Name $x_0, w_0 \in \mathbb{R}$ for which $x_0 \neq w_0$ and $f_7(x_0) = f_7(w_0)$. Try this roughwork: Start with the 'relation' ' $f_7(x_0) = f_7(w_0)$ ' to see what may prevent us from obtaining ' $x_0 = w_0$ '.]

$$\begin{array}{l}
O f_{\gamma}(x_{0}) = \frac{1}{1+x_{0}^{2}} = \frac{1}{1+(\frac{1}{2})^{2}} = \frac{4}{5}. \\
f_{\gamma}(w_{0}) = \frac{1}{1+w_{0}^{2}} = \frac{1}{1+(-\frac{1}{2})^{2}} = \frac{4}{5}. \\
S_{0} f_{\gamma}(x_{0}) = f_{\gamma}(w_{0}). \\
\text{It follows that } f_{\gamma} \text{ is not injective.}
\end{array}$$

How about
$$f_3, f_4, f_8$$
? [Exercise.]

Roughwork:

Ask: What happens when
$$f_1(x_0) = f_1(w_0)$$
?

$$f_1(x_0) = f_1(w_0)$$

$$\Rightarrow \frac{1}{1+x_0^2} = \frac{1}{1+w_0^2}$$

$$\Rightarrow 1+x_0^2 = 1+w_0^2$$

$$\Rightarrow |x_0| = |w_0|$$
Now ask: Can we name some distinct $x_0, w_0 \in \mathbb{R}$ satisfying $|x_0| = |w_0|$ and $f_1(x_0) = f_1(w_0)$?