






1. Definition.
Let K,L,M be non-empty sets, and φ : K2 −→ L be a function.
Suppose M is both a subset of K and a subset of L.
Then φ is said to define a closed binary operation on M if φ(x, y) ∈ M for any
x, y ∈ M .

Remark on notation. Where φ is a indeed a closed binary operation on M ,
we agree to write φ(x, y) as xφy for any x, y ∈ M .
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2. Definition.
Let A be a non-empty set, and • be a closed binary operation on A.
We say (A, •) is an abelian group (or, A forms an abelian group under •,) if it
satisfies the conditions (AG1)-(AG4) below:

(AG1) For any r, s, t ∈ A, (r • s) • t = r • (s • t).
(AG2) There exists some e ∈ A such that for any r ∈ A, e • r = r = r • e.
(AG3) For any r ∈ A, there exists some v ∈ A such that v • r = r • v = e.
(AG4) For any s, t ∈ A, s • t = t • s.

Remarks on terminologies.
• By virtue of (AG1), we say the Law of Associativity holds in (A, •).
• By virtue of (AG2), we say the Law of Existence of Identity holds in (A, •),

and e is called an identity element of (A, •).
• By virtue of (AG3), we say the Law of Existence of Inverse holds in (A, •),

and each such v is called an inverse of the corresponding r in (A, •).
• By virtue of (AG4), we say the Law of Commutativity holds in (A, •).
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3. Theorem (1).
Let (A, •) be an abelian group. The following statements hold:

(a) (A, •) has a unique identity element.
(b) Every element of A has a unique inverse in (A, •).
(c) For any r, s ∈ A, there exists some unique t ∈ A such that r = s • t. (Or

equivalent, for any r, s ∈ A, the equation r = s • u with unknown u in A has a
unique solution.)

Remarks on terminologies and notations.

(a) When the symbol for the closed binary operation in an abelian group is ‘+’ or ‘⊕’, we tend to refer to it as
‘addition’, and refer to the abelian group as an additive group.
We tend to denote its identity element denoted by ‘0’ and call it ‘zero’.
We tend to denote the inverse of any r in the additive group as −r and call it ‘minus r’.
For any r, s ∈ A, we present the unique solution to the equation r = s+ u with unknown u in A as u = r − s,
and refer to ‘r − s’ as the difference of r from s, or the resultant of s subtracted from r.

(b) When the symbol for the closed binary operation in an abelian group is ‘×’ or ‘·’ or ‘•’, we tend to refer to it
as ‘multiplication’, and refer to the abelian group as a multiplicative group.
We tend to write ‘r • s’ as ‘rs’, omitting the symbol for the closed binary operation altogether.
We tend to denote its identity element denoted by ‘1’ and call it ‘one’.
We tend to denote the inverse of any r in the multiplicative group as r−1 and call it ‘r-inverse’.
For any r, s ∈ A, we present the unique solution to equation r = su with unknown u in A as u = rs−1, and
refer to ‘rs−1’ as the quotient of r over s, or the resultant of r divided by s.
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4. Examples and non-examples of abelian groups.
(a) Each of (Z,+), (Q,+), (R,+), (C,+) is an abelian group. Here + is the usual addition of numbers.
(b) (R,−) is not an abelian group, because it fails to satisfy (AG1).
(c) (N,+) is not an abelian group, because it fails to satisfy (AG3).
(d) Each of (Q\{0}, ·), (R\{0}, ·), (C\{0}, ·) is an abelian group. Here · is the usual multiplication of

numbers.
(N, ·) is not an abelian group, because it fails to satisfy (AG3).

(e) ((0,+∞), ·) is an abelian group.
((0,+∞),+) is not an abelian group, because it fails to satisfy (AG2).

(f) Denote by S1 the set {z ∈ C : |z| = 1}.
(S1, ·) is an abelian group.

(g) For each n ∈ N\{0}, define Zn = {ζ ∈ C : ζn = 1}. (Zn is the set of all n-th roots of unity.)
(Zn, ·) is an abelian group.

(h) Denote by Matm×n(R) the set of all (m× n)-matrices with real entries.
(Matm×n(R),+) is an abelian group. Here + is the usual matrix addition.
(Matm×n(R), ·) is not an abelian group because it fails to satisfy (AG3). Here · is the usual matrix
multiplication.

(i) Denote by GL(Rn) the set of all (n× n)-invertible matrices with real entries.
When n ≥ 2, (GL(Rn), ·) is a not an abelian group, because it fails to satisfy (AG4).
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5. Theorem (2).
Let (A,+) be an abelian group. The statements below hold:

(a) For any r, s, t ∈ A, if r + t = s + t then r = s.
(b) For any r ∈ A, −(−r) = r.
(c) For any r, s ∈ A, r + (−s) = r − s.
(d) For any r, s ∈ A, −(r + s) = (−r) + (−s).
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6. Definition.
Let S be a set with at least two elements, and +,× be two closed binary operation
on S, called addition and multiplication respectively.
We say (S,+,×) is a commutative ring with unity (or, S forms a commutative
ring with unity under addition + and multiplication ×,) if it satisfies the conditions
(CR0)-(CR4) below:

(CR0) (S,+) is an abelian group, with additive identity 0.
(CR1) For any a, b, c ∈ S, (a× b)× c = a× (b× c).
(CR2) There exists some e ∈ S\{0} such that for any a ∈ S, e× a = a = a× e.
(CR3) For any a, b ∈ S, a× b = b× a.
(CR4) For any a, b, c ∈ S, a×(b+c) = (a×b)+(a×c) and (a+b)×c = (a×c)+(b×c).

Suppose (S,+,×) is indeed a commutative ring with unity.
(a) (S,+,×) is called an integral domain if it satisfies the condition (ID) below:
(ID) For any a, b ∈ S, if a× b = 0 then a = 0 or b = 0.

(b) (S,+,×) is called a field if it satisfies the condition (FI) below:
(FI) For any a ∈ S\{0}, there exists some v ∈ S such that a× v = v × a = e.

6



Remarks on terminologies.
• By virtue of (CR1), we say the Law of Associativity holds for multiplication

in (S,+,×).
• By virtue of (CR2), we say the Law of Existence of Multiplicative Identity

holds in (S,+,×), and e is called a multiplicative identity of (S,+,×).
• By virtue of (CR3), we say the Law of Commutativity holds for multiplication

in (S,+,×).
• By virtue of (CR4), we say the Distributive Laws holds in (S,+,×).
• The statement (ID) is referred to as the Law of Non-existence of Zero

Divisor for the integral domain (S,+,×).
• The statement (FI) is referred to as the Law of Existence of multiplicative

inverse for the field (S,+,×). Each such v is called a multiplicative inverse
of the corresponding a in (F,+,×).
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7. Examples and non-examples of commutative rings with unity, integral
domains and fields.

(a) Each of (Z,+,×), (Q,+,×), (R,+,×), (C,+,×) is an integral domain.
Each of (Q,+,×), (R,+,×), (C,+,×) is a field.
(Z,+,×) is not a field.

(b) (N,+,×) is not a commutative ring with unity, because it fails to satisfy (CR0).
(c) ((0,+∞),+, ·) is not a commutative ring with unity, because it fails to satisfy

(CR0).
(d) Whenever n ≥ 2, (Matn×n(R),+, ·) is not a commutative ring with unity, because

it fails to satisfy (CR3).
(e) Denote by G the set {z ∈ C : Re(z) ∈ Z and Im(z) ∈ Z}.

(G,+,×) is an integral domain.
(G is known as the ‘system of Gaussian integers’.)
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(f) Denote by R[x] the set of all polynomials with real coefficients.
(R[x],+) is an abelian group. Here + is the usual polynomial addition.
(R[x],+,×) is an integral domain. Here × is the usual polynomial multiplication.
(R[x],+,×) is not a field.

(g) Let I be an open interval. Denote by C(I) the set of all real-valued functions on
I which are continuous on I .
(C(I),+) is an abelian group. Here + is the usual ‘point-wise’ addition for real-
valued functions.
(C(I),+,×) is not an integral domain. Here × is the usual ‘point-wise’ multipli-
cation for real-valued functions.

(h) Denote by R(x) the set of all rational functions with real coefficients. (Each ele-

ment of R(x) is an expression of the form f (x)

g(x)
in which f (x), g(x) are polynomials

with real coefficients and g(x) is not the zero polynomial.)
(R(x),+) is an abelian group.
(R(x),+,×) is a field.
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8. Theorem (3).
Let (S,+,×) be a commutative ring with unity.
The multiplicative identity of (S,+,×) is unique.

Remark on notation. We denote the multiplicative identity of (S,+,×) by 1,
and call it one.

9. Theorem (4).
Let (S,+,×) be a commutative ring with unity.

(a) For any a ∈ S, a× 0 = 0.
(b) For any a, b ∈ S, a× (−b) = (−a)× b = −(a× b), and (−a)× (−b) = a× b.

10. Theorem (5).
Let (D,+,×) be a integral domain.
For any a, b, c ∈ D, if a ̸= 0 and a× b = a× c then b = c.
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11. Theorem (6).
Let (F,+,×) be a field.

(a) (F\{0},×) is an abelian group.
(b) Every element of F\{0} has a unique multiplicative inverse in (F,+,×).
(c) For any a, b ∈ F\{0}, there exists some unique c ∈ F\{0} such that a = b× c.

Remark on terminologies and notations. For each a ∈ F\{0}, we denote
the multiplicative inverse of a by a−1, and refer to it as ‘a-inverse’. Statement (c) can
be re-formulated as:
• For any a, b ∈ F\{0}, there is a unique solution, namely u = a × b−1, for the

equation a = bu with unknown u in F .

12. Theorem (7).
Suppose (F,+,×) is a field. Then (F,+,×) is an integral domain.

Remark. The converse of Theorem (7) is false.
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13. Definition.
Let (F,+,×), (E,+,×) be fields, with the same addition and multiplication.
We say that (F,+,×) is a subfield of (E,+,×), or equivalently, (E,+,×) is a
field extension of (F,+,×), if F is a subset of E.

Theorem (8).
Let (E,+,×) be a field. Suppose F is a subset of E.
Then F forms a field under addition + and multiplication × iff the statements hold:

(a) 0, 1 ∈ F .
(b) For any a, b ∈ F , a + b, a− b, a× b ∈ F .
(c) For any a, b ∈ F if b ̸= 0 then ab−1 ∈ F .
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14. More examples on fields.
The claims below can be verified with the help of Theorem (8):

(a) For each positive prime number p, define
Q[
√
p] = {r | r = a + b

√
p for some a, b ∈ Q}.

(Q[
√
p],+,×) is a field.

It is a subfield of (R,+,×) and it is a field extension of (Q,+,×).

(b) For each positive prime number p, define
Q[ 3
√
p] = {r | r = a + b 3

√
p + c( 3

√
p)2 for some a, b, c ∈ Q}.

(Q[ 3
√
p],+,×) is a field.

It is a subfield of (R,+,×) and it is a field extension of (Q,+,×).

(c) Define Q[i] = {ζ | ζ = a + bi for some a, b ∈ Q}.
(Q[i],+,×) is a field.
It is a subfield of (C,+,×) and it is a field extension of (Q,+,×).
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(d) For each positive prime number p, define
Q[i

√
p] = {ζ | ζ = a + bi

√
p for some a, b ∈ Q}.

(Q[i
√
p],+,×) is a field.

It is a subfield of (C,+,×) and it is a field extension of (Q,+,×).

(e) For each positive prime number p, define
Q[i,

√
p] = {ζ | ζ = a + bi + c

√
p + di

√
p for some a, b, c, d ∈ Q}.

(Q[i
√
p],+,×) is a field.

It is a subfield of (C,+,×) and it is a field extension of each of (Q,+,×), (Q[√p],+,×),
(Q[i],+,×).

(f) Write ω = cos

(
2π

3

)
+ i sin

(
2π

3

)
.

Define Q[ω] = {ζ | ζ = a + bω + cω2 for some a, b, c ∈ Q}.
It will turn out that Q[ω] = {ζ | ζ = a + bω for some a, b ∈ Q}.
(Q[ω],+,×) is a field.
It is a subfield of (C,+,×) and it is a field extension of (Q,+,×).
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